Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: M. C. Serreze x
  • Refine by Access: All Content x
Clear All Modify Search
Mark C. Serreze and Ciaran M. Hurst

Abstract

An improved monthly precipitation climatology for the Arctic is developed by blending the Legates and Willmott gridded product with measurements from Russian “North Pole” drifting stations and gauge-corrected station data for Eurasia and Canada. The improved climatology is used to examine the accuracy of mean precipitation forecasts from the National Centers for Environmental Prediction (NCEP) and European Reanalysis Agency (ERA) reanalysis models, based on data for the period 1979–88. Both models capture the major spatial features of annual mean precipitation and general aspects of the seasonal cycle but with some notable errors. Both underestimate precipitation over the Atlantic side of the Arctic. NCEP overestimates annual totals over land areas and to a somewhat lesser extent over the central Arctic Ocean. Except for the North Atlantic–Scandinavia sector, the NCEP model also depicts the seasonal precipitation maximum consistently one month early in July. Overall, the ERA predictions are better. Both models perform best during winter and worst during summer.

The most significant problem with the NCEP model is a severe oversimulation of summer precipitation over land areas, due to excessive convective precipitation. Further investigation for July reveals that both the NCEP analyses and 12-h forecasts are too wet below about 850 mb and have more negative low-level temperature gradients as compared to available rawinsonde profiles. This suggests that low-level observations are not being effectively incorporated in the analyses. Given this finding, the high humidities are consistent with excessive surface evaporation rates. This problem may in turn relate to soil moisture, which NCEP updates by the modeled precipitation. If soil moisture is too high, this would favor excessive evaporation and high low-level humidities, fostering excessive precipitation, in turn keeping soil moisture and evaporation rates high. The NCEP downwelling shortwave fluxes are also much too high, contributing to excessive evaporation and possibly influencing the low-level temperature gradients. By comparison, soil moisture in the ERA model is adjusted using the difference between the model first guess and analysis value (the analysis increment) of low-level humidity, which prevents model drift. The ERA downwelling shortwave fluxes are also closer to observations. These attributes are consistent with the superior ERA precipitation forecasts in summer and suggest avenues for improving the performance of the NCEP model.

Full access
Marika M. Holland, Joel Finnis, and Mark C. Serreze

Abstract

The Arctic Ocean freshwater budgets in climate model integrations of the twentieth and twenty-first century are examined. An ensemble of six members of the Community Climate System Model version 3 (CCSM3) is used for the analysis, allowing the anthropogenically forced trends over the integration length to be assessed. Mechanisms driving trends in the budgets are diagnosed, and the implications of changes in the Arctic–North Atlantic exchange on the Labrador Sea and Greenland–Iceland–Norwegian (GIN) Seas properties are discussed. Over the twentieth and the twenty-first centuries, the Arctic freshens as a result of increased river runoff, net precipitation, and decreased ice growth. For many of the budget terms, the maximum 50-yr trends in the time series occur from approximately 1975 to 2025, suggesting that we are currently in the midst of large Arctic change. The total freshwater exchange between the Arctic and North Atlantic increases over the twentieth and twenty-first centuries with decreases in ice export more than compensated for by an increase in the liquid freshwater export. Changes in both the liquid and solid (ice) Fram Strait freshwater fluxes are transported southward by the East Greenland Current and partially removed from the GIN Seas. Nevertheless, reductions in GIN sea ice melt do result from the reduced Fram Strait transport and account for the largest term in the changing ocean surface freshwater fluxes in this region. This counteracts the increased ocean stability due to the warming climate and helps to maintain GIN sea deep-water formation.

Full access
Jonathan D. Kahl, Mark C. Serreze, Spencer Shiotani, Suzanne M. Skony, and Russell C. Schnell

Two new databases containing Arctic in situ meteorological soundings have been constructed and are now available for distribution to interested researchers. The Historical Arctic Rawinsonde Archive is a comprehensive collection of over 1.2 million rawinsonde soundings north of 65°N. For most stations the record begins in 1958 and extends to 1987; however, for some stations the record begins as early as 1948. The Ptarmigan Dropsonde Archive contains more than 10 000 lower-tropospheric soundings over the Beaufort Sea and western Arctic Ocean during the period 1950–1961.

Full access
J. A. Maslanik, A. H. Lynch, M. C. Serreze, and W. Wu

Abstract

Simulations of Arctic climate require treatment of land, ocean, ice, and atmospheric processes, and are further complicated by the dynamic nature of the sea ice cover. Here, the ability of a climate system model to simulate conditions over the Arctic Ocean during April–September 1990, a period of anomalous atmospheric circulation and sea ice conditions, is investigated. Differences between observations and model results are used to gain insight into the mechanisms that contributed to the observed record reduction in ice extent in late summer. The coupled model reproduces the general patterns seen in comparison sea level pressure fields in most months, but the discrepancies significantly affect the model’s ability to simulate details of sea ice transport and warm air advection linked to the unusual ice conditions. The use of prescribed sea ice fraction in the climate model yields relatively small changes in the surface energy balance compared to the fully-coupled simulation with dynamic ice cover, but significantly affects atmospheric circulation in spring and late summer. Analyses of observations, coupled model experiments, and stand-alone ice model output suggest a positive feedback between ice dynamics and ice melt that contributed to the ice extent anomaly. The results highlight the importance of regional atmospheric circulation in driving interannual variations in Arctic ice extent, and illustrate the level of model performance needed to simulate such variations.

Full access
Alex D. Crawford, Karen E. Alley, Anna M. Cooke, and Mark C. Serreze

Abstract

Rain-on-snow (ROS) events can have adverse impacts on high-latitude ungulate populations when rain freezes in the snowpack, forming ice layers that block access to winter forage. In extreme cases, ROS events have led to mass die-offs. ROS events are linked to advection of warm and moist air, associated with extratropical cyclones. However, these conditions are common to many winter precipitation events, challenging our understanding of the particular conditions under which ROS events occur. This study uses the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) to differentiate ROS events in Alaska from precipitation events in which only snow falls on a preexisting snowpack [snow-on-snow (SOS)]. Over the North Slope and Kotzebue Sound, no clear difference exists between the tracks of ROS-producing and SOS-producing storms. However, in the interior, southwest, and Anchorage, tracks of ROS-producing storms tend to be farther north and west than for SOS-producing storms. The northwest shift of ROS-producing storms is linked to the position of upper-tropospheric anticyclones in the eastern Gulf of Alaska during ROS events. ROS-producing storms are no more intense than SOS-producing storms, but their association with atmospheric blocking leads to stronger pressure gradients on the east side of storms and thereby stronger advection of positive anomalies in temperature and precipitable water. For several sites, sea level pressure in the eastern Gulf of Alaska is also significantly higher a few days prior to ROS events than prior to SOS events, further implicating atmospheric blocking as a facilitator and potential predictor of ROS events.

Free access
Jonathan D. W. Kahl, Nina A. Zaitseva, V. Khattatov, R. C. Schnell, Dina M. Bacon, Jason Bacon, V. Radionov, and M. C. Serreze

An historical archive of over 25 000 radiosonde observations from the former Soviet “North Pole” series of drifting ice stations has been compiled and made available to interested researchers. This archive is the only long-term set of meteorological sounding data over the Arctic Ocean. The digital archive is a result of the multiyear, collaborative efforts of a group of United States and Russian scientists and keypunch operators working under the auspices of Working Group VIII, an area of study within the United States–Russian Federation Agreement for Protection of the Environment and Natural Resources. The archive contains soundings from 21 drifting stations over the period 1954–90 and is being distributed by the National Snow and Ice Data Center in Boulder, Colorado.

Full access
D. H. Bromwich, A. B. Wilson, L. Bai, Z. Liu, M. Barlage, C.-F. Shih, S. Maldonado, K. M. Hines, S.-H. Wang, J. Woollen, B. Kuo, H.-C. Lin, T.-K. Wee, M. C. Serreze, and J. E. Walsh

Abstract

The Arctic is a vital component of the global climate, and its rapid environmental evolution is an important element of climate change around the world. To detect and diagnose the changes occurring to the coupled Arctic climate system, a state-of-the-art synthesis for assessment and monitoring is imperative. This paper presents the Arctic System Reanalysis, version 2 (ASRv2), a multiagency, university-led retrospective analysis (reanalysis) of the greater Arctic region using blends of the polar-optimized version of the Weather Research and Forecasting (Polar WRF) Model and WRF three-dimensional variational data assimilated observations for a comprehensive integration of the regional climate of the Arctic for 2000–12. New features in ASRv2 compared to version 1 (ASRv1) include 1) higher-resolution depiction in space (15-km horizontal resolution), 2) updated model physics including subgrid-scale cloud fraction interaction with radiation, and 3) a dual outer-loop routine for more accurate data assimilation. ASRv2 surface and pressure-level products are available at 3-hourly and monthly mean time scales at the National Center for Atmospheric Research (NCAR). Analysis of ASRv2 reveals superior reproduction of near-surface and tropospheric variables. Broadscale analysis of forecast precipitation and site-specific comparisons of downward radiative fluxes demonstrate significant improvement over ASRv1. The high-resolution topography and land surface, including weekly updated vegetation and realistic sea ice fraction, sea ice thickness, and snow-cover depth on sea ice, resolve finescale processes such as topographically forced winds. Thus, ASRv2 permits a reconstruction of the rapid change in the Arctic since the beginning of the twenty-first century–complementing global reanalyses. ASRv2 products will be useful for environmental models, verification of regional processes, or siting of future observation networks.

Open access
Michael A. Rawlins, Michael Steele, Marika M. Holland, Jennifer C. Adam, Jessica E. Cherry, Jennifer A. Francis, Pavel Ya Groisman, Larry D. Hinzman, Thomas G. Huntington, Douglas L. Kane, John S. Kimball, Ron Kwok, Richard B. Lammers, Craig M. Lee, Dennis P. Lettenmaier, Kyle C. McDonald, Erika Podest, Jonathan W. Pundsack, Bert Rudels, Mark C. Serreze, Alexander Shiklomanov, Øystein Skagseth, Tara J. Troy, Charles J. Vörösmarty, Mark Wensnahan, Eric F. Wood, Rebecca Woodgate, Daqing Yang, Ke Zhang, and Tingjun Zhang

Abstract

Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described.

With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate observation system are needed to reduce uncertainties and to detect and document ongoing changes in all system components for further evidence of Arctic FWC intensification.

Full access
Taneil Uttal, Judith A. Curry, Miles G. McPhee, Donald K. Perovich, Richard E. Moritz, James A. Maslanik, Peter S. Guest, Harry L. Stern, James A. Moore, Rene Turenne, Andreas Heiberg, Mark. C. Serreze, Donald P. Wylie, Ola G. Persson, Clayton A. Paulson, Christopher Halle, James H. Morison, Patricia A. Wheeler, Alexander Makshtas, Harold Welch, Matthew D. Shupe, Janet M. Intrieri, Knut Stamnes, Ronald W. Lindsey, Robert Pinkel, W. Scott Pegau, Timothy P. Stanton, and Thomas C. Grenfeld

A summary is presented of the Surface Heat Budget of the Arctic Ocean (SHEBA) project, with a focus on the field experiment that was conducted from October 1997 to October 1998. The primary objective of the field work was to collect ocean, ice, and atmospheric datasets over a full annual cycle that could be used to understand the processes controlling surface heat exchanges—in particular, the ice–albedo feedback and cloud–radiation feedback. This information is being used to improve formulations of arctic ice–ocean–atmosphere processes in climate models and thereby improve simulations of present and future arctic climate. The experiment was deployed from an ice breaker that was frozen into the ice pack and allowed to drift for the duration of the experiment. This research platform allowed the use of an extensive suite of instruments that directly measured ocean, atmosphere, and ice properties from both the ship and the ice pack in the immediate vicinity of the ship. This summary describes the project goals, experimental design, instrumentation, and the resulting datasets. Examples of various data products available from the SHEBA project are presented.

Full access