Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: M. D. Petters x
  • Refine by Access: All Content x
Clear All Modify Search
D. Baumgardner, L. Avallone, A. Bansemer, S. Borrmann, P. Brown, U. Bundke, P. Y. Chuang, D. Cziczo, P. Field, M. Gallagher, J.-F. Gayet, A. Heymsfield, A. Korolev, M. Krämer, G. McFarquhar, S. Mertes, O. Möhler, S. Lance, P. Lawson, M. D. Petters, K. Pratt, G. Roberts, D. Rogers, O. Stetzer, J. Stith, W. Strapp, C. Twohy, and M. Wendisch

No abstract available.

Full access
Bjorn Stevens, Donald H. Lenschow, Gabor Vali, Hermann Gerber, A. Bandy, B. Blomquist, J. -L. Brenguier, C. S. Bretherton, F. Burnet, T. Campos, S. Chai, I. Faloona, D. Friesen, S. Haimov, K. Laursen, D. K. Lilly, S. M. Loehrer, Szymon P. Malinowski, B. Morley, M. D. Petters, D. C. Rogers, L. Russell, V. Savic-Jovcic, J. R. Snider, D. Straub, Marcin J. Szumowski, H. Takagi, D. C. Thornton, M. Tschudi, C. Twohy, M. Wetzel, and M. C. van Zanten

The second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study is described. The field program consisted of nine flights in marine stratocumulus west-southwest of San Diego, California. The objective of the program was to better understand the physics a n d dynamics of marine stratocumulus. Toward this end special flight strategies, including predominantly nocturnal flights, were employed to optimize estimates of entrainment velocities at cloud-top, large-scale divergence within the boundary layer, drizzle processes in the cloud, cloud microstructure, and aerosol–cloud interactions. Cloud conditions during DYCOMS-II were excellent with almost every flight having uniformly overcast clouds topping a well-mixed boundary layer. Although the emphasis of the manuscript is on the goals and methodologies of DYCOMS-II, some preliminary findings are also presented—the most significant being that the cloud layers appear to entrain less and drizzle more than previous theoretical work led investigators to expect.

Full access
T. Eidhammer, P. J. DeMott, A. J. Prenni, M. D. Petters, C. H. Twohy, D. C. Rogers, J. Stith, A. Heymsfield, Z. Wang, K. A. Pratt, K. A. Prather, S. M. Murphy, J. H. Seinfeld, R. Subramanian, and S. M. Kreidenweis


The initiation of ice in an isolated orographic wave cloud was compared with expectations based on ice nucleating aerosol concentrations and with predictions from new ice nucleation parameterizations applied in a cloud parcel model. Measurements of ice crystal number concentrations were found to be in good agreement both with measured number concentrations of ice nuclei feeding the clouds and with ice nuclei number concentrations determined from the residual nuclei of cloud particles collected by a counterflow virtual impactor. Using lognormal distributions fitted to measured aerosol size distributions and measured aerosol chemical compositions, ice nuclei and ice crystal concentrations in the wave cloud were reasonably well predicted in a 1D parcel model framework. Two different empirical parameterizations were used in the parcel model: a parameterization based on aerosol chemical type and surface area and a parameterization that links ice nuclei number concentrations to the number concentrations of particles with diameters larger than 0.5 μm. This study shows that aerosol size distribution and composition measurements can be used to constrain ice initiation by primary nucleation in models. The data and model results also suggest the likelihood that the dust particle mode of the aerosol size distribution controls the number concentrations of the heterogeneous ice nuclei, at least for the lower temperatures examined in this case.

Full access