Search Results

You are looking at 1 - 10 of 11 items for :

  • Author or Editor: M. E. Brooks x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: All Content x
Clear All Modify Search
Thomas M. Hamill
,
Russell S. Schneider
,
Harold E. Brooks
,
Gregory S. Forbes
,
Howard B. Bluestein
,
Michael Steinberg
,
Daniel Meléndez
, and
Randall M. Dole

In May 2003 there was a very destructive extended outbreak of tornadoes across the central and eastern United States. More than a dozen tornadoes struck each day from 3 May to 11 May 2003. This outbreak caused 41 fatalities, 642 injuries, and approximately $829 million dollars of property damage. The outbreak set a record for most tornadoes ever reported in a week (334 between 4–10 May), and strong tornadoes (F2 or greater) occurred in an unbroken sequence of nine straight days. Fortunately, despite this being one of the largest extended outbreaks of tornadoes on record, it did not cause as many fatalities as in the few comparable past outbreaks, due in large measure to the warning efforts of National Weather Service, television, and private-company forecasters and the smaller number of violent (F4–F5) tornadoes. This event was also relatively predictable; the onset of the outbreak was forecast skillfully many days in advance.

An unusually persistent upper-level trough in the intermountain west and sustained low-level southerly winds through the southern Great Plains produced the extended period of tornado-favorable conditions. Three other extended outbreaks in the past 88 years were statistically comparable to this outbreak, and two short-duration events (Palm Sunday 1965 and the 1974 Superoutbreak) were comparable in the overall number of strong tornadoes. An analysis of tornado statistics and environmental conditions indicates that extended outbreaks of this character occur roughly every 10 to 100 years.

Full access
Thomas M. Hamill
,
Russell S. Schneider
,
Harold E. Brooks
,
Gregory S. Forbes
,
Howard B. Bluestein
,
Michael Steinberg
,
Daniel Meléndez
, and
Randall M. Dole
Full access
Thomas M. Hamill
,
Russell S. Schneider
,
Harold E. Brooks
,
Gregory S. Forbes
,
Howard B. Bluestein
,
Michael Steinberg
,
Daniel Meléndez
, and
Randall M. Dole
Full access
Pieter Groenemeijer
,
Tomáš Púčik
,
Alois M. Holzer
,
Bogdan Antonescu
,
Kathrin Riemann-Campe
,
David M. Schultz
,
Thilo Kühne
,
Bernold Feuerstein
,
Harold E. Brooks
,
Charles A. Doswell III
,
Hans-Joachim Koppert
, and
Robert Sausen

Abstract

The European Severe Storms Laboratory (ESSL) was founded in 2006 to advance the science and forecasting of severe convective storms in Europe. ESSL was a grassroots effort of individual scientists from various European countries. The purpose of this article is to describe the 10-yr history of ESSL and present a sampling of its successful activities. Specifically, ESSL developed and manages the only multinational database of severe weather reports in Europe: the European Severe Weather Database (ESWD). Despite efforts to eliminate biases, the ESWD still suffers from spatial inhomogeneities in data collection, which motivates ESSL’s research into modeling climatologies by combining ESWD data with reanalysis data. ESSL also established its ESSL Testbed to evaluate developmental forecast products and to provide training to forecasters. The testbed is organized in close collaboration with several of Europe’s national weather services. In addition, ESSL serves a central role among the European scientific and forecast communities for convective storms, specifically through its training activities and the series of European Conferences on Severe Storms. Finally, ESSL conducts wind and tornado damage assessments, highlighted by its recent survey of a violent tornado in northern Italy.

Open access
I. A. Renfrew
,
R. S. Pickart
,
K. Våge
,
G. W. K. Moore
,
T. J. Bracegirdle
,
A. D. Elvidge
,
E. Jeansson
,
T. Lachlan-Cope
,
L. T. McRaven
,
L. Papritz
,
J. Reuder
,
H. Sodemann
,
A. Terpstra
,
S. Waterman
,
H. Valdimarsson
,
A. Weiss
,
M. Almansi
,
F. Bahr
,
A. Brakstad
,
C. Barrell
,
J. K. Brooke
,
B. J. Brooks
,
I. M. Brooks
,
M. E. Brooks
,
E. M. Bruvik
,
C. Duscha
,
I. Fer
,
H. M. Golid
,
M. Hallerstig
,
I. Hessevik
,
J. Huang
,
L. Houghton
,
S. Jónsson
,
M. Jonassen
,
K. Jackson
,
K. Kvalsund
,
E. W. Kolstad
,
K. Konstali
,
J. Kristiansen
,
R. Ladkin
,
P. Lin
,
A. Macrander
,
A. Mitchell
,
H. Olafsson
,
A. Pacini
,
C. Payne
,
B. Palmason
,
M. D. Pérez-Hernández
,
A. K. Peterson
,
G. N. Petersen
,
M. N. Pisareva
,
J. O. Pope
,
A. Seidl
,
S. Semper
,
D. Sergeev
,
S. Skjelsvik
,
H. Søiland
,
D. Smith
,
M. A. Spall
,
T. Spengler
,
A. Touzeau
,
G. Tupper
,
Y. Weng
,
K. D. Williams
,
X. Yang
, and
S. Zhou

Abstract

The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.

Open access
Steven V. Vasiloff
,
Dong-Jun Seo
,
Kenneth W. Howard
,
Jian Zhang
,
David H. Kitzmiller
,
Mary G. Mullusky
,
Witold F. Krajewski
,
Edward A. Brandes
,
Robert M. Rabin
,
Daniel S. Berkowitz
,
Harold E. Brooks
,
John A. McGinley
,
Robert J. Kuligowski
, and
Barbara G. Brown

Accurate quantitative precipitation estimates (QPE) and very short term quantitative precipitation forecasts (VSTQPF) are critical to accurate monitoring and prediction of water-related hazards and water resources. While tremendous progress has been made in the last quarter-century in many areas of QPE and VSTQPF, significant gaps continue to exist in both knowledge and capabilities that are necessary to produce accurate high-resolution precipitation estimates at the national scale for a wide spectrum of users. Toward this goal, a national next-generation QPE and VSTQPF (Q2) workshop was held in Norman, Oklahoma, on 28–30 June 2005. Scientists, operational forecasters, water managers, and stakeholders from public and private sectors, including academia, presented and discussed a broad range of precipitation and forecasting topics and issues, and developed a list of science focus areas. To meet the nation's needs for the precipitation information effectively, the authors herein propose a community-wide integrated approach for precipitation information that fully capitalizes on recent advances in science and technology, and leverages the wide range of expertise and experience that exists in the research and operational communities. The concepts and recommendations from the workshop form the Q2 science plan and a suggested path to operations. Implementation of these concepts is expected to improve river forecasts and flood and flash flood watches and warnings, and to enhance various hydrologic and hydrometeorological services for a wide range of users and customers. In support of this initiative, the National Mosaic and Q2 (NMQ) system is being developed at the National Severe Storms Laboratory to serve as a community test bed for QPE and VSTQPF research and to facilitate the transition to operations of research applications. The NMQ system provides a real-time, around-the-clock data infusion and applications development and evaluation environment, and thus offers a community-wide platform for development and testing of advances in the focus areas.

Full access

Cloudnet

Continuous Evaluation of Cloud Profiles in Seven Operational Models Using Ground-Based Observations

A. J. Illingworth
,
R. J. Hogan
,
E.J. O'Connor
,
D. Bouniol
,
M. E. Brooks
,
J. Delanoé
,
D. P. Donovan
,
J. D. Eastment
,
N. Gaussiat
,
J. W. F. Goddard
,
M. Haeffelin
,
H. Klein Baltink
,
O. A. Krasnov
,
J. Pelon
,
J.-M. Piriou
,
A. Protat
,
H. W. J. Russchenberg
,
A. Seifert
,
A. M. Tompkins
,
G.-J. van Zadelhoff
,
F. Vinit
,
U. Willén
,
D. R. Wilson
, and
C. L. Wrench

The Cloudnet project aims to provide a systematic evaluation of clouds in forecast and climate models by comparing the model output with continuous ground-based observations of the vertical profiles of cloud properties. In the models, the properties of clouds are simplified and expressed in terms of the fraction of the model grid box, which is filled with cloud, together with the liquid and ice water content of the clouds. These models must get the clouds right if they are to correctly represent both their radiative properties and their key role in the production of precipitation, but there are few observations of the vertical profiles of the cloud properties that show whether or not they are successful. Cloud profiles derived from cloud radars, ceilometers, and dual-frequency microwave radiometers operated at three sites in France, Netherlands, and the United Kingdom for several years have been compared with the clouds in seven European models. The advantage of this continuous appraisal is that the feedback on how new versions of models are performing is provided in quasi-real time, as opposed to the much longer time scale needed for in-depth analysis of complex field studies. Here, two occasions are identified when the introduction of new versions of the ECMWF and Météo-France models leads to an immediate improvement in the representation of the clouds and also provides statistics on the performance of the seven models. The Cloudnet analysis scheme is currently being expanded to include sites outside Europe and further operational forecasting and climate models.

Full access
Russell S. Vose
,
Scott Applequist
,
Mark A. Bourassa
,
Sara C. Pryor
,
Rebecca J. Barthelmie
,
Brian Blanton
,
Peter D. Bromirski
,
Harold E. Brooks
,
Arthur T. DeGaetano
,
Randall M. Dole
,
David R. Easterling
,
Robert E. Jensen
,
Thomas R. Karl
,
Richard W. Katz
,
Katherine Klink
,
Michael C. Kruk
,
Kenneth E. Kunkel
,
Michael C. MacCracken
,
Thomas C. Peterson
,
Karsten Shein
,
Bridget R. Thomas
,
John E. Walsh
,
Xiaolan L. Wang
,
Michael F. Wehner
,
Donald J. Wuebbles
, and
Robert S. Young

This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.

Full access
P. Joe
,
S. Belair
,
N.B. Bernier
,
V. Bouchet
,
J. R. Brook
,
D. Brunet
,
W. Burrows
,
J.-P. Charland
,
A. Dehghan
,
N. Driedger
,
C. Duhaime
,
G. Evans
,
A.-B. Filion
,
R. Frenette
,
J. de Grandpré
,
I. Gultepe
,
D. Henderson
,
A. Herdt
,
N. Hilker
,
L. Huang
,
E. Hung
,
G. Isaac
,
C.-H. Jeong
,
D. Johnston
,
J. Klaassen
,
S. Leroyer
,
H. Lin
,
M. MacDonald
,
J. MacPhee
,
Z. Mariani
,
T. Munoz
,
J. Reid
,
A. Robichaud
,
Y. Rochon
,
K. Shairsingh
,
D. Sills
,
L. Spacek
,
C. Stroud
,
Y. Su
,
N. Taylor
,
J. Vanos
,
J. Voogt
,
J. M. Wang
,
T. Wiechers
,
S. Wren
,
H. Yang
, and
T. Yip

Abstract

The Pan and Parapan American Games (PA15) are the third largest sporting event in the world and were held in Toronto in the summer of 2015 (10–26 July and 7–15 August). This was used as an opportunity to coordinate and showcase existing innovative research and development activities related to weather, air quality (AQ), and health at Environment and Climate Change Canada. New observational technologies included weather stations based on compact sensors that were augmented with black globe thermometers, two Doppler lidars, two wave buoys, a 3D lightning mapping array, two new AQ stations, and low-cost AQ and ultraviolet sensors. These were supplemented by observations from other agencies, four mobile vehicles, two mobile AQ laboratories, and two supersites with enhanced vertical profiling. High-resolution modeling for weather (250 m and 1 km), AQ (2.5 km), lake circulation (2 km), and wave models (250-m, 1-km, and 2.5-km ensembles) were run. The focus of the science, which guided the design of the observation network, was to characterize and investigate the lake breeze, which affects thunderstorm initiation, air pollutant transport, and heat stress. Experimental forecasts and nowcasts were provided by research support desks. Web portals provided access to the experimental products for other government departments, public health authorities, and PA15 decision-makers. The data have been released through the government of Canada’s Open Data Portal and as a World Meteorological Organization’s Global Atmospheric Watch Urban Research Meteorology and Environment dataset.

Full access
Keith A. Browning
,
Alan M. Blyth
,
Peter A. Clark
,
Ulrich Corsmeier
,
Cyril J. Morcrette
,
Judith L. Agnew
,
Sue P. Ballard
,
Dave Bamber
,
Christian Barthlott
,
Lindsay J. Bennett
,
Karl M. Beswick
,
Mark Bitter
,
Karen E. Bozier
,
Barbara J. Brooks
,
Chris G. Collier
,
Fay Davies
,
Bernhard Deny
,
Mark A. Dixon
,
Thomas Feuerle
,
Richard M. Forbes
,
Catherine Gaffard
,
Malcolm D. Gray
,
Rolf Hankers
,
Tim J. Hewison
,
Norbert Kalthoff
,
Samiro Khodayar
,
Martin Kohler
,
Christoph Kottmeier
,
Stephan Kraut
,
Michael Kunz
,
Darcy N. Ladd
,
Humphrey W. Lean
,
Jürgen Lenfant
,
Zhihong Li
,
John Marsham
,
James McGregor
,
Stephan D. Mobbs
,
John Nicol
,
Emily Norton
,
Douglas J. Parker
,
Felicity Perry
,
Markus Ramatschi
,
Hugo M. A. Ricketts
,
Nigel M. Roberts
,
Andrew Russell
,
Helmut Schulz
,
Elizabeth C. Slack
,
Geraint Vaughan
,
Joe Waight
,
David P. Wareing
,
Robert J. Watson
,
Ann R. Webb
, and
Andreas Wieser

The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model.

A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawinsondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP.

This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.

Full access