Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: M. E. Cope x
- Refine by Access: All Content x
Abstract
The performance of the Australian Air Quality Forecasting System (AAQFS) is examined by means of a case study of a 7-day photochemical smog event in the Sydney region. This was the worst smog event for the 2000/ 01 oxidant season, and, because of its prolonged nature, it provided the opportunity to demonstrate the ability of AAQFS to forecast situations involving recirculation of precursors and remnant ozone, fumigation, and complex meteorological dynamics. The forecasting system was able to successfully predict high values of ozone, although at times the peak concentrations for the inland stations were underestimated. The dynamics for the Sydney region require a sensitive balance between the synoptic and mesoscale flows. Often high concentrations of ozone were advected inland by the sea breeze. On two occasions the system forecast a synoptic flow that was too strong, which blocked the inland advancement of the sea breeze. The peak ozone forecasts were underpredicted at the inland stations on those occasions. An examination of possible factors causing forecast errors has indicated that the AAQFS is more sensitive to errors in the meteorological conditions, rather than in the emissions or chemical mechanism in the Sydney region.
Abstract
The performance of the Australian Air Quality Forecasting System (AAQFS) is examined by means of a case study of a 7-day photochemical smog event in the Sydney region. This was the worst smog event for the 2000/ 01 oxidant season, and, because of its prolonged nature, it provided the opportunity to demonstrate the ability of AAQFS to forecast situations involving recirculation of precursors and remnant ozone, fumigation, and complex meteorological dynamics. The forecasting system was able to successfully predict high values of ozone, although at times the peak concentrations for the inland stations were underestimated. The dynamics for the Sydney region require a sensitive balance between the synoptic and mesoscale flows. Often high concentrations of ozone were advected inland by the sea breeze. On two occasions the system forecast a synoptic flow that was too strong, which blocked the inland advancement of the sea breeze. The peak ozone forecasts were underpredicted at the inland stations on those occasions. An examination of possible factors causing forecast errors has indicated that the AAQFS is more sensitive to errors in the meteorological conditions, rather than in the emissions or chemical mechanism in the Sydney region.
Abstract
A 4-day photochemical smog event in the Melbourne, Victoria, Australia, region (6–9 March 2001) is examined to assess the performance of the Australian Air Quality Forecasting System (AAQFS). Although peak ozone concentrations measured during this period did not exceed the 1-h national air quality standard of 100 ppb, elevated maximum ozone concentrations in the range of 50–80 ppb were recorded at a number of monitoring stations on all four days. These maximum values were in general very well forecast by the AAQFS. On all but the third day the system predicted the advection of ozone precursors over Port Phillip (the adjacent bay) during the morning, where, later in the day, relatively high ozone concentrations developed. The ozone was advected back inland by bay and sea breezes. On the third day, a southerly component to the background wind direction prevented the precursor drainage over the bay, and the characteristic ozone cycle was disrupted. The success of the system's ability to predict peak ozone at individual monitoring stations was largely dependent on the direction and penetration of the sea and bay breezes, which in turn were dependent on the delicate balance between these winds and the opposing synoptic flow.
Abstract
A 4-day photochemical smog event in the Melbourne, Victoria, Australia, region (6–9 March 2001) is examined to assess the performance of the Australian Air Quality Forecasting System (AAQFS). Although peak ozone concentrations measured during this period did not exceed the 1-h national air quality standard of 100 ppb, elevated maximum ozone concentrations in the range of 50–80 ppb were recorded at a number of monitoring stations on all four days. These maximum values were in general very well forecast by the AAQFS. On all but the third day the system predicted the advection of ozone precursors over Port Phillip (the adjacent bay) during the morning, where, later in the day, relatively high ozone concentrations developed. The ozone was advected back inland by bay and sea breezes. On the third day, a southerly component to the background wind direction prevented the precursor drainage over the bay, and the characteristic ozone cycle was disrupted. The success of the system's ability to predict peak ozone at individual monitoring stations was largely dependent on the direction and penetration of the sea and bay breezes, which in turn were dependent on the delicate balance between these winds and the opposing synoptic flow.
Abstract
The Australian Air Quality Forecasting System (AAQFS) is the culmination of a 3-yr project to develop a numerical primitive equation system for generating high-resolution (1–5 km) short-term (24–36 h) forecasts for the Australian coastal cities of Melbourne and Sydney. Forecasts are generated 2 times per day for a range of primary and secondary air pollutants, including ozone, nitrogen dioxide, carbon monoxide, sulfur dioxide, and particles that are less than 10 μm in diameter (PM10). A preliminary assessment of system performance has been undertaken using forecasts generated over a 3-month demonstration period. For the priority pollutant ozone it was found that AAQFS achieved a coefficient of determination of 0.65 and 0.57 for forecasts of peak daily 1-h concentration in Melbourne and Sydney, respectively. The probability of detection and false-alarm rate were 0.71 and 0.55, respectively, for a 60-ppb forecast threshold in Melbourne. A similar level of skill was achieved for Sydney. System performance is also promising for the primary gaseous pollutants. Further development is required before the system can be used to forecast PM10 confidently, with a systematic overprediction of 24-h PM10 concentration occurring during the winter months.
Abstract
The Australian Air Quality Forecasting System (AAQFS) is the culmination of a 3-yr project to develop a numerical primitive equation system for generating high-resolution (1–5 km) short-term (24–36 h) forecasts for the Australian coastal cities of Melbourne and Sydney. Forecasts are generated 2 times per day for a range of primary and secondary air pollutants, including ozone, nitrogen dioxide, carbon monoxide, sulfur dioxide, and particles that are less than 10 μm in diameter (PM10). A preliminary assessment of system performance has been undertaken using forecasts generated over a 3-month demonstration period. For the priority pollutant ozone it was found that AAQFS achieved a coefficient of determination of 0.65 and 0.57 for forecasts of peak daily 1-h concentration in Melbourne and Sydney, respectively. The probability of detection and false-alarm rate were 0.71 and 0.55, respectively, for a 60-ppb forecast threshold in Melbourne. A similar level of skill was achieved for Sydney. System performance is also promising for the primary gaseous pollutants. Further development is required before the system can be used to forecast PM10 confidently, with a systematic overprediction of 24-h PM10 concentration occurring during the winter months.
Abstract
The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.
Abstract
The Iceland Greenland Seas Project (IGP) is a coordinated atmosphere–ocean research program investigating climate processes in the source region of the densest waters of the Atlantic meridional overturning circulation. During February and March 2018, a field campaign was executed over the Iceland and southern Greenland Seas that utilized a range of observing platforms to investigate critical processes in the region, including a research vessel, a research aircraft, moorings, sea gliders, floats, and a meteorological buoy. A remarkable feature of the field campaign was the highly coordinated deployment of the observing platforms, whereby the research vessel and aircraft tracks were planned in concert to allow simultaneous sampling of the atmosphere, the ocean, and their interactions. This joint planning was supported by tailor-made convection-permitting weather forecasts and novel diagnostics from an ensemble prediction system. The scientific aims of the IGP are to characterize the atmospheric forcing and the ocean response of coupled processes; in particular, cold-air outbreaks in the vicinity of the marginal ice zone and their triggering of oceanic heat loss, and the role of freshwater in the generation of dense water masses. The campaign observed the life cycle of a long-lasting cold-air outbreak over the Iceland Sea and the development of a cold-air outbreak over the Greenland Sea. Repeated profiling revealed the immediate impact on the ocean, while a comprehensive hydrographic survey provided a rare picture of these subpolar seas in winter. A joint atmosphere–ocean approach is also being used in the analysis phase, with coupled observational analysis and coordinated numerical modeling activities underway.