Search Results

You are looking at 1 - 10 of 83 items for

  • Author or Editor: M. J. Martin x
  • All content x
Clear All Modify Search
Roel A. J. Neggers, Martin Köhler, and Anton C. M. Beljaars

Abstract

This study considers the question of what is the least complex bulk mass flux framework that can still conceptually reproduce the smoothly varying coupling between the shallow convective cloud layer and the subcloud mixed layer. To this end, the model complexity of the classic single bulk mass flux scheme is enhanced. Inspired by recent large-eddy simulation results, the authors argue that two relatively minor but key conceptual modifications are already sufficient to achieve this goal: (i) retaining a dry transporting updraft in the moist limit and (ii) applying continuous updraft area partitioning to this dual mass flux (DualM) framework. The dry updraft represents all internal mixed layer updrafts that terminate near the mixed layer top, whereas the moist updraft represents all updrafts that condense and rise out of the mixed layer as buoyant cumulus clouds. The continuous area partitioning between the dry and moist updraft is a function of moist convective inhibition above the mixed layer top. Updraft initialization is a function of the updraft area fraction and is therefore consistent with the updraft definition. It is argued that the model complexity thus enhanced is sufficient to allow reproduction of various phenomena involved in the cloud–subcloud coupling, namely (i) dry countergradient transport within the mixed layer that is independent of the moist updraft, (ii) soft triggering of moist convective flux throughout the boundary layer, and (iii) a smooth response to smoothly varying forcings, including the reproduction of gradual transitions to and from shallow cumulus convection.

The DualM framework is evaluated by implementing in the Eddy Diffusivity Mass Flux (EDMF) boundary layer scheme of the ECMWF’s Integrated Forecasting System. Single column model experiments are evaluated against large-eddy simulation results for a range of different cases that span a broad parameter space of cloud–subcloud coupling intensities. The results illustrate that also in numerical practice the DualM framework can reproduce gradual transitions to and from shallow cumulus convection. Model behavior is further explored through experiments in which model complexity is purposely reduced, thus mimicking a single bulk updraft setup. This gives more insight into the new model-internal interactions and explains the obtained case results.

Full access
Richard L. Coulter, Timothy J. Martin, and William M. Porch

Abstract

The characteristics of tributary drainage flow in stable, nocturnal conditions in three closely located tributaries are compared. The orientation of the tributaries with respect to Kimball Creek, into which they drain, appears to be a controlling factor in the tributary flow. In particular, oscillations in the drainage flow are found to be weakest and drainage mass per unit area greatest in the tributary most closely aligned with the main canyon.

Full access
R. L. Coulter, T. J. Martin, and T. M. Weckwerth

Abstract

Measurements of raindrop fall velocity spectra have been made with a minisodar. Amplitude calibration of the system enables the calculation of drop size parameters such as number density, water density, and surface area using methods similar to those with Doppler radar studies. The acoustic measurements are at 10 m intervals within 200 m of the surface and benefit from an almost complete separation of droplet velocity spectra from atmospheric vertical velocity spectra. Comparison of parameters with those reported in the literature shows good agreement. It is shown that the chief difficulty with the method is atmospheric attenuation; however, excess attenuation due to scattering from droplets is found to be unimportant.

Full access
Martin Claus, Richard J. Greatbatch, Peter Brandt, and John M. Toole

Abstract

The equatorial deep jets (EDJs) are a ubiquitous feature of the equatorial oceans; in the Atlantic Ocean, they are the dominant mode of interannual variability of the zonal flow at intermediate depth. On the basis of more than 10 years of moored observations of zonal velocity at 23°W, the vertically propagating EDJs are best described as superimposed oscillations of the 13th to the 23rd baroclinic modes with a dominant oscillation period for all modes of 1650 days. This period is close to the resonance period of the respective gravest equatorial basin mode for the dominant vertical modes 16 and 17. It is argued that since the equatorial basin mode is composed of linear equatorial waves, a linear reduced-gravity model can be employed for each baroclinic mode, driven by spatially homogeneous zonal forcing oscillating with the EDJ period. The fit of the model solutions to observations at 23°W yields a basinwide reconstruction of the EDJs and the associated vertical structure of their forcing. From the resulting vertical profile of mean power input and vertical energy flux on the equator, it follows that the EDJs are locally maintained over a considerable depth range, from 500 to 2500 m, with the maximum power input and vertical energy flux at 1300 m. The strong dissipation closely ties the apparent vertical propagation of energy to the vertical distribution of power input and, together with the EDJs’ prevailing downward phase propagation, requires the phase of the forcing of the EDJs to propagate downward.

Full access
Jason M. Cordeira, F. Martin Ralph, and Benjamin J. Moore

Abstract

This study investigates the evolution of two zonally elongated atmospheric rivers (ARs) that produced >200 mm of rainfall over mountainous regions of Northern California in late October 2010. Synoptic-scale analysis and air parcel trajectory analysis indicate that the ARs developed within high-CAPE environments characterized by troposphere-deep ascent as water vapor was transported directly from western North Pacific tropical cyclones (TCs) toward the equatorward entrance region of an intensifying North Pacific jet stream (NPJ). The same ARs were subsequently maintained as water vapor was transported from extratropical and subtropical regions over the central and eastern North Pacific in an environment characterized by quasigeostrophic forcing for ascent and strong frontogenesis along the anticyclonic shear side of an intense and zonally extended NPJ. Although the ARs developed in conjunction with water vapor transported from regions near TCs and in the presence of troposphere-deep ascent, an atmospheric water vapor budget illustrates that decreases in integrated water vapor (IWV) via precipitation are largely offset by the horizontal aggregation of water vapor along the AR corridors via IWV flux convergence in the presence of frontogenesis. The frameworks used for investigations of predecessor rain events ahead of TCs and of interactions between recurving TCs and the NPJ are also utilized to illustrate many dynamically similar processes related to AR development and evolution. Similarities include the following: water vapor transport directly from a TC, troposphere-deep ascent in a high-CAPE environment beneath the equatorward entrance region of an intensifying upper-tropospheric jet streak, interactions between diabatic outflow and an upper-tropospheric jet streak, and strong frontogenesis.

Full access
Martin Durocher, Fateh Chebana, and Taha B. M. J. Ouarda

Abstract

This paper presents an approach for regional flood frequency analysis (RFFA) in the presence of nonlinearity and problematic stations, which require adapted methodologies. To this end, the projection pursuit regression (PPR) is proposed. The PPR is a family of regression models that applies smooth functions on intermediate predictors to fit complex patterns. The PPR approach can be seen as a hybrid method between the generalized additive model (GAM) and the artificial neural network (ANN), which combines the advantages of both methods. Indeed, the PPR approach has the structure of a GAM to describe nonlinear relations between hydrological variables and other basin characteristics. On the other hand, PPR can consider interactions between basin characteristics to improve the predictive capabilities in a similar way to ANN, but simpler. The methodology developed in the present study is applied to a case study represented by hydrometric stations from southern Québec, Canada. It is shown that flood quantiles are mostly associated with a dominant intermediate predictor, which provides a parsimonious representation of the nonlinearity in the flood-generating processes. The model performance is compared to eight other methods available in the literature for the same dataset, including GAM and ANN. When using the same basin characteristics, the results indicate that the simpler structure of PPR does not affect the global performance and that PPR is competitive with the best existing methods in RFFA. Particular attention is also given to the performance resulting from the choice of the basin characteristics and the presence of problematic stations.

Full access
M. García-Díez, J. Fernández, D. San-Martín, S. Herrera, and J. M. Gutiérrez

Abstract

Limited area models (LAMs) are widely used tools to downscale the wind speed forecasts issued by general circulation models. However, only a few studies have systematically analyzed the value added by the LAMs to the coarser-resolution-model wind. The goal of the present work is to investigate how added value depends on the resolution of the driving global model. With this aim, the Weather Research and Forecasting (WRF) Model was used to downscale three different global datasets (GFS, ERA-Interim, and NCEP–NCAR) to a 9-km-resolution grid for a 1-yr period. Model results were compared with a large set of surface observations, including land station and offshore buoy data. Substantial biases were found at this resolution over mountainous terrain, and a slight modification to the subgrid orographic drag parameterization was introduced to alleviate the problem. It was found that, at this resolution, WRF is able to produce significant added value with respect to the NCEP–NCAR reanalysis and ERA-Interim but only a small amount of added value with respect to GFS forecasts. Results suggest that, as model resolution increases, traditional skill scores tend to saturate. Thus, adding value to high-resolution global models becomes significantly more difficult.

Full access
Julie M. Jones, Ryan L. Fogt, Martin Widmann, Gareth J. Marshall, Phil D. Jones, and Martin Visbeck

Abstract

Seasonal reconstructions of the Southern Hemisphere annular mode (SAM) index are derived to extend the record before the reanalysis period, using station sea level pressure (SLP) data as predictors. Two reconstructions using different predictands are obtained: one [Jones and Widmann (JW)] based on the first principal component (PC) of extratropical SLP and the other (Fogt) on the index of Marshall. A regional-based SAM index (Visbeck) is also considered.

These predictands agree well post-1979; correlations decline in all seasons except austral summer for the full series starting in 1958. Predictand agreement is strongest in spring and summer; hence agreement between the reconstructions is highest in these seasons. The less zonally symmetric SAM structure in winter and spring influences the strength of the SAM signal over land areas, hence the number of stations included in the reconstructions. Reconstructions from 1865 were, therefore, derived in summer and autumn and from 1905 in winter and spring.

This paper examines the skill of each reconstruction by comparison with observations and reanalysis data. Some of the individual peaks in the reconstructions, such as the most recent in austral summer, represent a full hemispheric SAM pattern, while others are caused by regional SLP anomalies over the locations of the predictors. The JW and Fogt reconstructions are of similar quality in summer and autumn, while in winter and spring the Marshall index is better reconstructed by Fogt than the PC index is by JW. In spring and autumn the SAM shows considerable variability prior to recent decades.

Full access
G. M. Martin, M. A. Ringer, V. D. Pope, A. Jones, C. Dearden, and T. J. Hinton

Abstract

The atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is described and an assessment of its mean climatology presented. HadGEM1 includes substantially improved representations of physical processes, increased functionality, and higher resolution than its predecessor, the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). Major developments are the use of semi-Lagrangian instead of Eulerian advection for both dynamical and tracer fields; new boundary layer, gravity wave drag, microphysics, and sea ice schemes; and major changes to the convection, land surface (including tiled surface characteristics), and cloud schemes. There is better coupling between the atmosphere, land, ocean, and sea ice subcomponents and the model includes an interactive aerosol scheme, representing both the first and second indirect effects. Particular focus has been placed on improving the processes (such as clouds and aerosol) that are most uncertain in projections of climate change.

These developments lead to a significantly more realistic simulation of the processes represented, the most notable improvements being in the hydrological cycle, cloud radiative properties, the boundary layer, the tropopause structure, and the representation of tracers.

Full access
Paul J. Neiman, Mimi Hughes, Benjamin J. Moore, F. Martin Ralph, and Ellen M. Sukovich

Abstract

Five 915-MHz wind profilers and GPS receivers across California's northern Central Valley (CV) and adjacent Sierra foothills and coastal zone, in tandem with a 6-km-resolution gridded reanalysis dataset generated from the Weather Research and Forecasting Model, document key spatiotemporal characteristics of Sierra barrier jets (SBJs), landfalling atmospheric rivers (ARs), and their interactions. Composite kinematic and thermodynamic analyses are based on the 13 strongest SBJ cases observed by the Sloughhouse profiler between 2009 and 2011. The analyses show shallow, cool, south-southeasterly (i.e., Sierra parallel) flow and associated water vapor transport strengthening with time early in the 24-h compositing period, culminating in an SBJ core at <1 km above ground over the eastern CV. The SBJ core increases in altitude up the Sierra's windward slope and poleward toward the north end of the CV, but it does not reach the westernmost CV. Above the developing SBJ, strengthening southwesterly flow descends temporally in response to the landfalling AR. The moistening SBJ reaches maximum intensity during the strongest AR flow aloft, at which time the core of the AR-parallel vapor transport slopes over the SBJ. The inland penetration of the AR through the San Francisco Bay gap in the coastal mountains contributes to SBJ moistening and deepening. The SBJ subsequently weakens with the initial cold-frontal period aloft, during which the shallow flow shifts to southwesterly and the heaviest precipitation falls in the Sierra foothills. An orographic precipitation analysis quantitatively links the Sierra-perpendicular (nearly AR parallel) vapor fluxes to enhanced precipitation along the Sierra's windward slope and the SBJ-parallel fluxes to heavy precipitation at the north end of the CV.

Full access