Search Results

You are looking at 1 - 10 of 30 items for

  • Author or Editor: M. Joan Alexander x
  • Refine by Access: All Content x
Clear All Modify Search
Claudia Stephan
and
M. Joan Alexander

Abstract

Gravity waves have important effects on the middle atmosphere circulation, and those generated by convection are prevalent in the tropics and summer midlatitudes. Numerous case studies have been carried out to investigate their characteristics in high-resolution simulations. Here, the impact of the choice of physics parameterizations on the generation and spectral properties of these waves in models is investigated. Using the Weather Research and Forecasting Model (WRF) a summertime squall line over the Great Plains is simulated in a three-dimensional, nonlinear, and nonhydrostatic mesoscale framework. The distributions of precipitation strength and echo tops in the simulations are compared with radar data. Unsurprisingly, those storm features are most sensitive to the microphysics scheme. However, it is found that these variations in storm morphology have little influence on the simulated stratospheric momentum flux spectra. These results support the fundamental idea behind climate model parameterizations: that the large-scale storm conditions can be used to predict the spectrum of gravity wave momentum flux above the storm irrespective of the convective details that coarse-resolution models cannot capture. The simulated spectra are then contrasted with those obtained from a parameterization used in global climate models. The parameterization reproduces the shape of the spectra reasonably well but their magnitudes remain highly sensitive to the peak heating rate within the convective cells.

Full access
M. Joan Alexander
and
Christopher Barnet

Abstract

Small-scale gravity waves are common features in atmospheric temperature observations. In satellite observations, these waves have been traditionally difficult to resolve because the footprint or resolution of the measurements precluded their detection or clear identification. Recent advances in satellite instrument resolution coupled to innovative analysis techniques have led in the last decade to some new global datasets describing the temperature variance associated with these waves. Such satellite observations have been considered the best hope for quantifying the global properties of gravity waves needed to constrain parameterizations of their effects for global models. Although global maps of averaged gravity wave temperature variance have now been published from a variety of different instruments on Earth-orbiting platforms these maps have not provided the needed constraints. The present paper first summarizes what has been learned from traditional temporally and spatially averaged analyses of satellite gravity wave observations and why new analysis methods are needed. Then an alternative is offered to these traditional analyses that recognizes the fact that the waves occur in large-amplitude events, or wave packets, that can be analyzed individually and in a statistical sense with probability density functions. For this purpose the authors present some examples of the occurrence of short-horizontal-scale waves appearing in Atmospheric Infrared Sounder (AIRS) radiance measurements and present statistics on the wave properties compiled over 1 month of data for a geographic region over Patagonia, South America.

Full access
David A. Ortland
and
M. Joan Alexander

Abstract

Observation and modeling studies indicate that the wave flux from tropical heating sources that propagates into the lower stratosphere is sensitive to the buoyancy frequency profile N(z) in the troposphere. This sensitivity is explained by examining analytic solutions to the vertical structure equation for various simplified models of the tropical troposphere. An efficient method for obtaining expressions for these analytic solutions when N(z) is piecewise constant is presented. The solution is expressed in terms of reflection and transmission coefficients. It is found that the response to heating for Hough modes with small equivalent depth is quite sensitive to the shape of the heating profile, the magnitude of N(z) within the heating profile, and the internal wave reflections that result from the sharp change in N(z) at the tropopause. The location of the primary peak in the wave response, which occurs where the wavelength is twice the depth of the heating for a constant N(z) profile, is also sensitive to the occurrence of internal wave reflection.

Full access
Stephanie Evan
,
M. Joan Alexander
, and
Jimy Dudhia

Abstract

A 2-day inertia–gravity wave (IGW) was observed in high-resolution radiosonde soundings of horizontal wind and temperature taken during the 2006 Tropical Warm Pool–International Cloud Experiment (TWP-ICE) experiment in the Darwin area. The wave was observed in the stratosphere above Darwin from 28 January to 5 February. A similar wave event is observed in the European Centre for Medium-Range Weather Forecasts (ECMWF) operational data. A comparison between the characteristics of the IGW derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this 2-day wave event but with a larger vertical wavelength.

A reverse ray-tracing method is used to localize the source region. Using ECMWF data to define the atmospheric background conditions and wave properties observed in the soundings, it is found that the 2-day wave event originated from deep convection in the Indonesian region around 20 January.

The Weather Research and Forecasting (WRF) modeling system is used to complement the ECMWF data to assess the influence of vertical resolution and initial conditions on the wave structure. The model domain is configured as a tropical channel and the ECMWF analyses provide the north/south boundaries and initial conditions. WRF is used with the same horizontal resolution (40 km) as the operational ECMWF in 2006 while using a finer vertical grid spacing than ECMWF. The model is run from 18 January to 11 February to cover the wave life cycle. Different experiments are also performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions, and vertical resolution. The 2-day wave properties resulting from the WRF experiments are compared to those retrieved from the radiosonde data and from the ECMWF analyses. It is demonstrated that higher vertical resolution would be required for ECMWF to accurately resolve the vertical structure of the wave and its effect on the middle-atmospheric circulation.

Full access
David A. Ortland
and
M. Joan Alexander

Abstract

Latent heating estimates derived from rainfall observations are used to construct model experiments that isolate equatorial waves forced by tropical convection from midlatitude synoptic-scale waves. These experiments are used to demonstrate that quasi-stationary equatorial Rossby waves forced by latent heating drive most of the observed residual-mean upwelling across the tropopause transition layer within 15° of the equator. The seasonal variation of the equatorial waves and the mean meridional upwelling that they cause is examined for two full years from 2006 to 2007. Changes in equatorial Rossby wave propagation through seasonally varying mean winds are the primary mechanism for producing an annual variation in the residual-mean upwelling. In the tropical tropopause layer, averaged within 15° of the equator and between 90 and 190 hPa, the annual cycle varies between a maximum upwelling of 0.4 mm s−1 during boreal winter and spring and a minimum of 0.2 mm s−1 during boreal summer. This variability seems to be due to small changes in the mean wind speed in the tropics. Seasonal variations in latent heating have only a relatively minor effect on seasonal variations in tropical tropopause upwelling. In addition, Kelvin waves drive a small downward component of the total circulation over the equator that may be modulated by the quasi-biennial oscillation.

Full access
Albert Hertzog
,
M. Joan Alexander
, and
Riwal Plougonven

Abstract

In this article, long-duration balloon and spaceborne observations, and mesoscale numerical simulations are used to study the intermittency of gravity waves in the lower stratosphere above Antarctica and the Southern Ocean; namely, the characteristics of the gravity wave momentum-flux probability density functions (pdfs) obtained with these three datasets are described. The pdfs consistently exhibit long tails associated with the occurrence of rare and large-amplitude events. The pdf tails are even longer above mountains than above oceanic areas, which is in agreement with previous studies of gravity wave intermittency in this region. It is moreover found that these rare, large-amplitude events represent the main contribution to the total momentum flux during the winter regime of the stratospheric circulation. In contrast, the wave intermittency significantly decreases when stratospheric easterlies develop in late spring and summer. It is also shown that, except above mountainous areas in winter, the momentum-flux pdfs tend to behave like lognormal distributions. Monte Carlo simulations are undertaken to examine the role played by critical levels in influencing the shape of momentum-flux pdfs. In particular, the study finds that the lognormal shape may result from the propagation of a wave spectrum into a varying background wind field that generates the occurrence of frequent critical levels.

Full access
Rajul E. Pandya
and
M. Joan Alexander

Abstract

The spectra of linear gravity waves generated by a time-varying tropospheric thermal forcing representing organized convection are compared to the spectra of stratospheric gravity waves generated by organized convection in a fully nonlinear two-dimensional squall line simulation. The resemblance between the spectra in the two simulations suggests that stratospheric gravity waves above convection can be understood primarily in terms of the linear response to a time- and space-dependent thermal forcing. In particular, the linear response to thermal forcing accounts for the correlation between the dominant vertical wavelength of the stratospheric waves and the depth of the tropospheric convection as well as the the fact that the dominant frequency of the stratospheric waves is the same as the frequency of oscillation of the main convective updraft.

Full access
Ji-Eun Kim
and
M. Joan Alexander

Abstract

Tropical precipitation characteristics are investigated using the Tropical Rainfall Measuring Mission (TRMM) 3-hourly estimates, and the result is compared with five reanalyses including the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim), Modern Era Retrospective Analysis for Research and Applications (MERRA), National Centers for Environmental Prediction (NCEP)–National Center for Atmospheric Research (NCAR) reanalysis (NCEP1), NCEP–U.S. Department of Energy (DOE) reanalysis (NCEP2), and NCEP–Climate Forecast System Reanalysis (CFSR). Precipitation characteristics are evaluated in terms of the mean, convectively coupled equatorial wave activity, frequency characteristics, diurnal cycle, and seasonality of regional precipitation variability associated with submonthly scale waves. Generally the latest reanalyses such as ERA-Interim, MERRA, and CFSR show better performances than NCEP1 and NCEP2. However, all the reanalyses are still different from observations. Besides the positive mean bias in the reanalyses, a spectral analysis revealed that the reanalyses have overreddened spectra with persistent rainfall. MERRA has the most persistent rainfall, and CFSR appears to have the most realistic variability. The diurnal cycle in NCEP1 is extremely exaggerated relative to TRMM. The low-frequency waves with the period longer than 3 days are relatively well represented in ERA-Interim, MERRA, and CFSR, but all the reanalyses have significant deficiencies in representing convectively coupled equatorial waves and variability in the high-frequency range.

Full access
Sharon L. Vadas
,
David C. Fritts
, and
M. Joan Alexander

Abstract

The authors propose that the body force that accompanies wave breaking is potentially an important linear mechanism for generating secondary waves that propagate into the mesosphere and lower thermosphere. While the focus of this paper is on 3D forcings, it is shown that this generating mechanism can explain some of the mean wind and secondary wave features generated from wave breaking in a 2D nonlinear model study. Deep 3D body forces, which generate secondary waves very efficiently, create high-frequency waves with large vertical wavelengths that possess large momentum fluxes. The efficiency of this forcing is independent of latitude. However, the spatial and temporal variability/intermittency of a body force is important in determining the properties and associated momentum fluxes of the secondary waves. High spatial and temporal variability accompanying a wave breaking process leads to large secondary wave momentum fluxes. If a body force varies slowly with time, negligible secondary wave fluxes result. Spatial variability is important because distributing “averaged” body forces over larger regions horizontally (as is often necessary in GCM models) results in waves with smaller frequencies, larger horizontal wavelengths, and smaller associated momentum fluxes than would otherwise result. Because some of the secondary waves emitted from localized body force regions have large vertical wavelengths and large intrinsic phase speeds, the authors anticipate that secondary wave radiation from wave breaking in the mesosphere may play a significant role in the momentum budget well into the thermosphere.

Full access
Claudia Stephan
,
M. Joan Alexander
, and
Jadwiga H. Richter

Abstract

Characteristic properties of gravity waves from convection over the continental United States are derived from idealized high-resolution numerical simulations. In a unique modeling approach, waves are forced by a realistic thermodynamic source based on observed precipitation data. The square of the precipitation rate and the gravity wave momentum fluxes both show lognormal occurrence distributions, with long tails of extreme events. Convectively generated waves can give forces in the lower stratosphere that at times rival orographic wave forcing. Throughout the stratosphere, zonal forces due to convective wave drag are much stronger than accounted for by current gravity wave drag parameterizations, so their contribution to the summer branch of the stratospheric Brewer–Dobson circulation is in fact much larger than models predict. A comparison of these forces to previous estimates of the total drag implies that convectively generated gravity waves are a primary source of summer-hemisphere stratospheric wave drag. Furthermore, intermittency and strength of the zonal forces due to convective gravity wave drag in the lower stratosphere resemble analysis increments, suggesting that a more realistic representation of these waves may help alleviate model biases on synoptic scales. The properties of radar precipitation and gravity waves seen in this study lead to a proposed change for future parameterization methods that would give more realistic drag forces in the stratosphere without compromising mesospheric gravity wave drag.

Full access