Search Results

You are looking at 1 - 10 of 32 items for

  • Author or Editor: M. Latif x
  • Refine by Access: All Content x
Clear All Modify Search
M. Latif

Abstract

The interdecadal variability as simulated by coupled ocean–atmosphere models is reviewed. Emphasis is given to that class of interdecadal variability that arises from ocean–atmosphere interactions. The interdecadal variability simulated can be classified roughly into four classes: tropical interdecadal variability, interdecadal variability that involves both the Tropics and the extratropics as active regions, midlatitudinal interdecadal variability involving the wind-driven ocean gyres, and midlatitudinal interdecadal variability involving the thermohaline circulation. Several coupled models predict the existence of different interdecadal climate cycles, with periods ranging from approximately 10–50 yr. This implies some inherent predictability at decadal timescales, provided that these interdecadal cycles exist in the real climate system.

Full access
W. Park and M. Latif

Abstract

The dependence of the air–sea interactions over the North Atlantic on the ocean dynamics is explored by analyzing multicentury integrations with two different coupled ocean–atmosphere models. One is a coupled general circulation model (CGCM), in which both the atmospheric and the oceanic components are represented by general circulation models (GCMs). The second coupled model employs the same atmospheric GCM, but the oceanic GCM is replaced by a fixed-depth mixed layer model, so that variations of the ocean dynamics are excluded. The coupled model including active ocean dynamics simulates strong multidecadal variability in the sea surface temperature (SST) of the North Atlantic, with a monopolar spatial structure. In contrast, the coupled model that employs an oceanic mixed layer model and thus does not carry active ocean dynamics simulates a tripolar SST anomaly pattern at decadal time scales. The tripolar SST anomaly pattern is characterized by strong horizontal gradients and is by definition the result of the action of surface heat flux anomalies on the oceanic mixed layer.

The differences in the spatial structures of the dominant decadal SST anomaly patterns yield rather different atmospheric responses. While the response to the monopolar SST anomaly pattern is shallow and thermal, the response to the tripolar SST anomaly pattern involves changes in the transient eddy statistics. The latter can be explained by the strong horizontal SST gradients that affect the surface baroclinicity, which in turn affects the growth rate of the transient eddies. The differences in the atmospheric response characteristics yield completely different response patterns. In the coupled run with active ocean dynamics, the sea level pressure (SLP) anomalies exhibit a rather homogeneous pattern that resembles somewhat the East Atlantic Pattern (EAP), while a dipolar (North Atlantic Oscillation) NAO-like SLP anomaly pattern is simulated in the coupled run without active ocean dynamics.

Full access
M. Latif and T. P. Barnett

Abstract

The authors have investigated the interactions of the tropical oceans on interannual timescales by conducting a series of uncoupled atmospheric and oceanic general circulation experiments and hybrid-coupled model simulations. The results illustrate the key role of the El Niño/Southern Oscillation phenomenon in generating interannual variability in all three tropical ocean basins. Sea surface temperature anomalies in the tropical Pacific force SST anomalies of the same sign in the Indian Ocean and SST anomalies of the opposite sign in the Atlantic via a changed atmospheric circulation. However, although air-sea interactions in the Indian and Atlantic Oceans are much weaker than those in the Pacific, they contribute significantly to the variability in these two regions. The role of these air-sea interactions is mainly that of an amplifier by which the ENSO-induced signals are enhanced in the ocean and atmosphere. This process is particularly important in the tropical Atlantic region.

The authors investigated, also, whether ENSO is part of a zonally propagating “wave,” which travels around the globe with a timescale of several years. Consistent with observations, the upper-ocean heat content in the various numerical simulators seems to propagate slowly around the globe. SST anomalies in the Pacific Ocean introduce a global atmospheric response, which in turn forces variations in the other tropical oceans. Since the different oceans exhibit different response characteristics to low-frequency wind changes, the individual tropical ocean responses can add up coincidentally to look like a global wave, and that appears to be the situation. In particular, no evidence is found that the Indian Ocean can significantly affect the ENSO cycle in the Pacific. Finally, the potential for climate forecasts in the Indian and Atlantic Oceans appears to be enhanced if one includes, in a coupled way, remote influences from the Pacific.

Full access
M. Latif and T. P. Barnett

Abstract

The dynamics and predictability of decadal climate variability over the North Pacific and North America are investigated by analyzing various observational datasets and the output of a state of the art coupled ocean–atmosphere general circulation model that was integrated for 125 years. Both the observations and model results support the picture that the decadal variability in the region of interest is based on a cycle involving unstable ocean–atmosphere interactions over the North Pacific. The period of this cycle is of the order of a few decades.

The cycle involves the two major circulation regimes in the North Pacific climate system, the subtropical ocean gyre, and the Aleutian low. When, for instance, the subtropical ocean gyre is anomalously strong, more warm tropical waters are transported poleward by the Kuroshio and its extension, leading to a positive SST anomaly in the North Pacific. The atmospheric response to this SST anomaly involves a weakened Aleutian low, and the associated fluxes at the air–sea interface reinforce the initial SST anomaly, so that ocean and atmosphere act as a positive feedback system. The anomalous heat flux, reduced ocean mixing in response to a weakened storm track, and anonmalous Ekman heat transport contribute to this positive feedback.

The atmospheric response, however, consists also of a wind stress curl anomaly that spins down the subtropical ocean gyre, thereby reducing the poleward heat transport and the initial SST anomaly. The ocean adjusts with some time lag to the change in the wind stress curl, and it is this transient ocean response that allows continuous oscillations. The transient response can be expressed in terms of baroclinic planetary waves, and the decadal timescale of the oscillation is therefore determined to first order by wave timescales. Advection by the mean currents, however, is not negligible.

The existence of such a cycle provides the basis of long-range climate forecasting over North America at decadal timescales. At a minimum, knowledge of the present phase of the decadal mode should allow a “now-cast” of expected climate “bias” over North America, which is equivalent to a climate forecast several years ahead.

Full access
A. W. Robertson, M. Ghil, and M. Latif

Abstract

The response of the Max Planck Institute’s ECHAM3 atmospheric general circulation model to a prescribed decade-long positive anomaly in sea surface temperatures (SSTs) over the North Atlantic is investigated. Two 10-yr realizations of the anomaly experiment are compared against a 100-yr control run of the model with seasonally varying climatological SST using a model spatial resolution of T42. In addition to the time-mean response, particular attention is paid to changes in intraseasonal variability, expressed in terms of North Atlantic–European weather regimes. The model regimes are quite realistic.

Substantial differences are found in the 700-mb geopotential height field response between the two decadal realizations. The time-mean response in the first sample decade is characterized by the positive (zonal) phase of the North Atlantic oscillation (NAO); this response can be identified with changes in the frequency of occurrence of certain weather regimes by about one standard deviation. (Preliminary results of this numerical experiment were reported at the Atlantic Climate Variability Workshop held at the Lamont–Doherty Earth Observatory of Columbia University, Palisades, New York, 24–26 September 1997.) By contrast, the second SST anomaly decade shows a localized trough centered over the British Isles; it projects less strongly onto the model’s intrinsic weather regimes. The control run itself exhibits pronounced decade-to-decade variations in the weather regimes’ frequency of occurrence as well as in its NAO index. The two 10-yr anomaly experiments are insufficient, in length and number, to identify a robust SST response above this level of intrinsic variability.

Full access
F. Álvarez-García, M. Latif, and A. Biastoch

Abstract

Observed sea surface temperatures (SSTs) in the North Atlantic from 1958 through 2000, as well as data from an ocean model simulation driven with the atmospheric variability observed during the same period, are examined using multichannel singular spectrum analysis. The two leading oscillatory modes are associated with a multidecadal and a quasi-decadal period. The former is connected to a basinwide uniform SST pattern and changes in the deep North Atlantic meridional overturning circulation. The quasi-decadal mode involves a tripolar SST anomaly pattern forced by atmospheric variability with a spatial structure resembling that of the North Atlantic Oscillation (NAO). The upper ocean’s dynamical response to this NAO variability provides an instantaneous positive feedback to the SST pattern, while a delayed negative feedback is due to shallow overturning circulation anomalies.

Full access
Birgit Schneider, M. Latif, and Andreas Schmittner

Abstract

Climate models predict a gradual weakening of the North Atlantic meridional overturning circulation (MOC) during the twenty-first century due to increasing levels of greenhouse gas concentrations in the atmosphere. Using an ensemble of 16 different coupled climate models performed for the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), the evolution of the MOC during the twentieth and twenty-first centuries is analyzed by combining model simulations for the IPCC scenarios Twentieth-Century Climate in Coupled Models (20C3M) and Special Report on Emission Scenarios, A1B (SRESA1B). Earlier findings are confirmed that even for the same forcing scenario the model response is spread over a large range. However, no model predicts abrupt changes or a total collapse of the MOC. To reduce the uncertainty of the projections, different weighting procedures are applied to obtain “best estimates” of the future MOC evolution, considering the skill of each model to represent present day hydrographic fields of temperature, salinity, and pycnocline depth as well as observation-based mass transport estimates. Using different methods of weighting the various models together, all produce estimates that the MOC will weaken by 25%–30% from present day values by the year 2100; however, absolute values of the MOC and the degree of reduction differ among the weighting methods.

Full access
W. Xu, T. P. Barnett, and M. Latif

Abstract

In this study, a hybrid coupled model (HCM) is used to investigate the physics of decadal variability in the North Pacific. This aids in an understanding of the inherent properties of the coupled ocean–atmosphere system in the absence of stochastic forcing by noncoupled variability. It is shown that the HCM simulates a self-sustained decadal oscillation with a period of about 20 yr, similar to that found in both the observations and coupled GCMs.

Sensitivity experiments are carried out to determine the relative importance of wind stresses, net surface heat flux, and freshwater flux on the initiation and maintenance of the decadal oscillation in the North Pacific. It is found that decadal variability is a mode of the coupled system and involves interaction of sea surface temperature, upper-ocean heat content, and wind stress. This interaction is mainly controlled by the wind stress but can be strongly modified by the surface heat flux. The effect of the salinity is relatively small and is not necessary to generate the model decadal oscillation in the North Pacific.

There are some limitations with this study. First, the effect of a stochastic forcing is not included. Second, a weak negative feedback is needed to run the control experiment for a longer time period. These two areas will be addressed in a future investigation.

Full access
A. Grötzner, M. Latif, and T. P. Barnett

Abstract

In this paper a decadal climate cycle in the North Atlantic that was derived from an extended-range integration with a coupled ocean–atmosphere general circulation model is described. The decadal mode shares many features with the observed decadal variability in the North Atlantic. The period of the simulated oscillation, however, is somewhat longer than that estimated from observations. While the observations indicate a period of about 12 yr, the coupled model simulation yields a period of about 17 yr. The cyclic nature of the decadal variability implies some inherent predictability at these timescales.

The decadal mode is based on unstable air–sea interactions and must be therefore regarded as an inherently coupled mode. It involves the subtropical gyre and the North Atlantic oscillation. The memory of the coupled system, however, resides in the ocean and is related to horizontal advection and to the oceanic adjustment to low-frequency wind stress curl variations. In particular, it is found that variations in the intensity of the Gulf Stream and its extension are crucial to the oscillation. Although differing in details, the North Atlantic decadal mode and the North Pacific mode described by M. Latif and T. P. Barnett are based on the same fundamental mechanism: a feedback loop between the wind driven subtropical gyre and the extratropical atmospheric circulation.

Full access
M. Latif, J. Biercamp, and H. Von Storch

Abstract

A coupled ocean-atmosphere general circulation model has been developed for TOGA related problems. The coupled model consists of an ocean model of the tropical Pacific and a global low-order spectral atmosphere model. The two models interact via wind stress and sea surface temperature. In order to avoid a climate drift within the coupled model, a flux correction method is applied.

Experiments were performed by introducing a westerly wind stress burst over the western equatorial Pacific for one month. Thereafter, the wind burst is turned off and the response of the coupled model to the initial disturbance is investigated. The results are compared with the response of the ocean model run with the same disturbance in an uncoupled mode.

It is shown that the coupling leads to a significant increase of the duration of anomalous conditions in the ocean. SST anomalies persist for about 12 months in the coupled run, while they have already disappeared after 4 months in the uncoupled case. The increase in persistence is due to the feedback of the atmosphere, which responds with an eastward shift of the ascending branch of the Walker Circulation.

In a second experiment with the coupled model the initial disturbance was introduced within another season. The results show no basic differences to the results of the first experiment.

An interesting result of the coupled model runs is the occurrence of spontaneous westerly wind bursts over the western Pacific, which developed by internal dynamics. Location and duration of these spontaneous wind bursts show some correspondence with the time-space structure of observed westerly wind stress episodes over the western Pacific.

Full access