Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: M. M. Hurwitz x
  • All content x
Clear All Modify Search
M. M. Hurwitz, P. A. Newman, L. D. Oman, and A. M. Molod

Abstract

This study is the first to identify a robust El Niño–Southern Oscillation (ENSO) signal in the Antarctic stratosphere. El Niño events between 1979 and 2009 are classified as either conventional “cold tongue” events (positive SST anomalies in the Niño-3 region) or “warm pool” events (positive SST anomalies in the Niño-4 region). The 40-yr ECMWF Re-Analysis (ERA-40), NCEP, and Modern Era Retrospective–Analysis for Research and Applications (MERRA) meteorological reanalyses are used to show that the Southern Hemisphere stratosphere responds differently to these two types of El Niño events. Consistent with previous studies, cold tongue events do not impact temperatures in the Antarctic stratosphere. During warm pool El Niño events, the poleward extension and increased strength of the South Pacific convergence zone favor an enhancement of planetary wave activity during September–November. On average, these conditions lead to higher polar stratospheric temperatures and a weakening of the Antarctic polar jet in November and December, as compared with neutral ENSO years. The phase of the quasi-biennial oscillation (QBO) modulates the stratospheric response to warm pool El Niño events; the strongest planetary wave driving events are coincident with the easterly phase of the QBO.

Full access
N. Calvo, M. Iza, M. M. Hurwitz, E. Manzini, C. Peña-Ortiz, A. H. Butler, C. Cagnazzo, S. Ineson, and C. I. Garfinkel

Abstract

The Northern Hemisphere (NH) stratospheric signals of eastern Pacific (EP) and central Pacific (CP) El Niño events are investigated in stratosphere-resolving historical simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), together with the role of the stratosphere in driving tropospheric El Niño teleconnections in NH climate. The large number of events in each composite addresses some of the previously reported concerns related to the short observational record. The results shown here highlight the importance of the seasonal evolution of the NH stratospheric signals for understanding the EP and CP surface impacts. CMIP5 models show a significantly warmer and weaker polar vortex during EP El Niño. No significant polar stratospheric response is found during CP El Niño. This is a result of differences in the timing of the intensification of the climatological wavenumber 1 through constructive interference, which occurs earlier in EP than CP events, related to the anomalous enhancement and earlier development of the Pacific–North American pattern in EP events. The northward extension of the Aleutian low and the stronger and eastward location of the high over eastern Canada during EP events are key in explaining the differences in upward wave propagation between the two types of El Niño. The influence of the polar stratosphere in driving tropospheric anomalies in the North Atlantic European region is clearly shown during EP El Niño events, facilitated by the occurrence of stratospheric summer warmings, the frequency of which is significantly higher in this case. In contrast, CMIP5 results do not support a stratospheric pathway for a remote influence of CP events on NH teleconnections.

Full access
Michael D. Hurwitz, Daniel M. Ricciuto, Peter S. Bakwin, Kenneth J. Davis, Weiguo Wang, Chiuxiang Yi, and Martha P. Butler

Abstract

Mixing ratios of CO2 often change abruptly in the presence of inclement weather and low pressure systems. Water vapor mixing ratio, temperature, wind speed, and wind direction data are used to infer that the abrupt changes in CO2 mixing ratios at a site in northern Wisconsin are due to tropospheric mixing, horizontal transport, or a combination of both processes. Four different scenarios are examined: the passage of a summer cold front, a summer convective storm, an early spring frontal passage, and a late autumn low pressure system. Each event caused CO2 mixing ratios to change rapidly when compared to biological processes. In one summer convective event, vertical mixing caused CO2 mixing ratios to rise more than 22 ppm in just 90 s. Synoptic-scale transport was also evident in the presence of storm systems and frontal boundaries. In the cases examined, synoptic-scale transport changed CO2 mixing ratios as much as 15 ppm in a 1-h time period. The events selected here represent extremes in the rate of change of boundary layer CO2 mixing ratios, excluding the commonly observed venting of a shallow, stable boundary layer. The rapid changes in CO2 mixing ratios that were observed imply that large mixing ratio gradients must exist, often over rather small spatial scales, in the troposphere over North America. These rapid changes may be utilized in inverse modeling techniques aimed at identifying sources and sinks of CO2 on regional to continental scales.

Full access
Chaim I. Garfinkel, Luke D. Oman, Elizabeth A. Barnes, Darryn W. Waugh, Margaret H. Hurwitz, and Andrea M. Molod

Abstract

A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air–sea interface, in which surface roughness is increased for moderate wind speeds (4–20 m s−1), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upward wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in midwinter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry–climate models use a similar scheme for their surface-layer momentum exchange and have similar biases in the stratosphere, the authors expect that results from GEOSCCM may be relevant for other climate models.

Full access
Margaret M. Hurwitz, S. Baxter, B. Brown, J. Carman, J. Dale, C. Draper, F. Horsfall, M. Hughes, J. Gerth, S. Kapnick, C. Olheiser, M. Olsen, C. Stachelski, M. Vincent, R. S. Webb, and J. Zdrojewski
Full access