Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: M. S. Pritchard x
  • Refine by Access: All Content x
Clear All Modify Search
S. B. Idso, R. S. Ingram, and J. M. Pritchard
Full access
Paul A. Levine, James T. Randerson, Yang Chen, Michael S. Pritchard, Min Xu, and Forrest M. Hoffman

Abstract

El Niño–Southern Oscillation (ENSO) is an important driver of climate and carbon cycle variability in the Amazon. Sea surface temperature (SST) anomalies in the equatorial Pacific drive teleconnections with temperature directly through changes in atmospheric circulation. These circulation changes also impact precipitation and, consequently, soil moisture, enabling additional indirect effects on temperature through land–atmosphere coupling. To separate the direct influence of ENSO SST anomalies from the indirect effects of soil moisture, a mechanism-denial experiment was performed to decouple their variability in the Energy Exascale Earth System Model (E3SM) forced with observed SSTs from 1982 to 2016. Soil moisture variability was found to amplify and extend the effects of SST forcing on eastern Amazon temperature and carbon fluxes in E3SM. During the wet season, the direct, circulation-driven effect of ENSO SST anomalies dominated temperature and carbon cycle variability throughout the Amazon. During the following dry season, after ENSO SST anomalies had dissipated, soil moisture variability became the dominant driver in the east, explaining 67%–82% of the temperature difference between El Niño and La Niña years, and 85%–91% of the difference in carbon fluxes. These results highlight the need to consider the interdependence between temperature and hydrology when attributing the relative contributions of these factors to interannual variability in the terrestrial carbon cycle. Specifically, when offline models are forced with observations or reanalysis, the contribution of temperature may be overestimated when its own variability is modulated by hydrology via land–atmosphere coupling.

Open access
W. J. Gutowski Jr., P. A. Ullrich, A. Hall, L. R. Leung, T. A. O’Brien, C. M. Patricola, R. W. Arritt, M. S. Bukovsky, K. V. Calvin, Z. Feng, A. D. Jones, G. J. Kooperman, E. Monier, M. S. Pritchard, S. C. Pryor, Y. Qian, A. M. Rhoades, A. F. Roberts, K. Sakaguchi, N. Urban, and C. Zarzycki
Full access
W. J. Gutowski Jr, P. A. Ullrich, A. Hall, L. R. Leung, T. A. O’Brien, C. M. Patricola, R. W. Arritt, M. S. Bukovsky, K. V. Calvin, Z. Feng, A. D. Jones, G. J. Kooperman, E. Monier, M. S. Pritchard, S. C. Pryor, Y. Qian, A. M. Rhoades, A. F. Roberts, K. Sakaguchi, N. Urban, and C. Zarzycki

ABSTRACT

Regional climate modeling addresses our need to understand and simulate climatic processes and phenomena unresolved in global models. This paper highlights examples of current approaches to and innovative uses of regional climate modeling that deepen understanding of the climate system. High-resolution models are generally more skillful in simulating extremes, such as heavy precipitation, strong winds, and severe storms. In addition, research has shown that fine-scale features such as mountains, coastlines, lakes, irrigation, land use, and urban heat islands can substantially influence a region’s climate and its response to changing forcings. Regional climate simulations explicitly simulating convection are now being performed, providing an opportunity to illuminate new physical behavior that previously was represented by parameterizations with large uncertainties. Regional and global models are both advancing toward higher resolution, as computational capacity increases. However, the resolution and ensemble size necessary to produce a sufficient statistical sample of these processes in global models has proven too costly for contemporary supercomputing systems. Regional climate models are thus indispensable tools that complement global models for understanding physical processes governing regional climate variability and change. The deeper understanding of regional climate processes also benefits stakeholders and policymakers who need physically robust, high-resolution climate information to guide societal responses to changing climate. Key scientific questions that will continue to require regional climate models, and opportunities are emerging for addressing those questions.

Free access