Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: M. Sugi x
  • All content x
Clear All Modify Search
R. Krishnan, C. Zhang, and M. Sugi

Abstract

In this paper the authors present results of diagnostic analysis of observations and complementary experiments with a simple numerical model that enable them to synthesize the morphology and dynamics of “breaks” in the Indian summer monsoon (ISM). Almost one week ahead of the onset of a break spell over India, a monotonically decreasing trend in convective activity is found to occur over the Bay of Bengal in response to a steady eastward spreading of dry convectively stable anomalies from the equatorial Indian Ocean. A major intensification of the convectively stable anomalies over the Bay of Bengal is seen about 2–3 days prior to commencement of a monsoon break. Both observations and modeling experiments reveal that rapid northwest propagating Rossby waves are triggered in response to such a large strengthening of the convectively stable anomalies. It is shown that an abrupt movement of anomalous Rossby waves from the Bay of Bengal into northwest and central India marks the initiation of a break monsoon spell. Typically the Rossby waves are found to traverse from the central Bay of Bengal to northwest India in about 2–3 days’ time. With the establishment of a break phase, the eastward spreading low-latitude anomaly decouples from the rapid northwest propagating anomaly. This decoupling effect paves the way for the emergence of a convectively unstable anomaly over the equatorial Indian Ocean. It is proposed that the dynamics of the rapid northwest propagating anomalous Rossby waves from the central Bay of Bengal toward northwest India and decoupling of the eastward propagating anomaly are two extremely vital elements that determine the transition from an above normal phase to a break phase of the ISM and also help maintain the mutual competition between convection over the Indian subcontinent and that over the equatorial Indian Ocean. Through modeling experiments it is demonstrated that low-latitude Rossby wave dynamics in the presence of a monsoon basic flow, which is driven by a steady north–south differential heating, is a primary physical mechanism that controls the so-called monsoon breaks.

Full access
R. Krishnan, Vinay Kumar, M. Sugi, and J. Yoshimura

Abstract

Results from a 20-yr simulation of a high-resolution AGCM forced with climatological SST, along with simplified model experiments and supplementary data diagnostics, are used to investigate internal feedbacks arising from monsoon–midlatitude interactions during droughts in the Indian summer monsoon. The AGCM simulation not only shows a fairly realistic mean monsoon rainfall distribution and large-scale circulation features but also exhibits remarkable interannual variations of precipitation over the subcontinent, with the 20-yr run showing incidence of four “monsoon droughts.”

The present findings indicate that the internally forced droughts in the AGCM emanate largely from prolonged “monsoon breaks” that occur on subseasonal time scales and involve dynamical feedbacks between monsoon convection and extratropical circulation anomalies. In this feedback, the suppressed monsoon convection is shown to induce Rossby wave dispersion in the summertime subtropical westerlies and to set up an anomalous quasi-stationary circulation pattern extending across continental Eurasia in the middle and upper troposphere. This pattern is composed of a cyclonic anomaly over west central Asia and the Indo-Pakistan region, a meridionally deep anticyclonic anomaly over East Asia (∼100°E), and a cyclonic anomaly over the Far East. The results suggest that the anchoring of the west central Asia cyclonic anomaly by the stagnant ridge located downstream over East Asia induces anomalous cooling in the middle and upper troposphere through cold-air advection, which reduces the meridional thermal contrast over the subcontinent. Additionally, the intrusion of the dry extratropical winds into northwest India can decrease the convective instability, so that the suppressed convection can in turn weaken the monsoon flow. The sustenance of monsoon breaks through such monsoon–midlatitude feedbacks can generate droughtlike conditions over India.

Full access