Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Maike Ahlgrimm x
  • All content x
Clear All Modify Search
Maike Ahlgrimm and Richard Forbes

Abstract

The long-term measurement records from the Atmospheric Radiation Measurement site on the Southern Great Plains show evidence of a bias in the ECMWF model’s surface irradiance. Based on previous studies, which have suggested that summertime shallow clouds may contribute to the bias, an evaluation of 146 days with observed nonprecipitating fair-weather cumulus clouds is performed. In-cloud liquid water path and effective radius are both overestimated in the model with liquid water path dominating to produce clouds that are too reflective. These are compensated by occasional cloud-free days in the model such that the fair-weather cumulus regime overall does not contribute significantly to the multiyear daytime mean surface irradiance bias of 23 W m−2. To further explore the origin of the bias, observed and modeled cloud fraction profiles over 6 years are classified and sorted based on the surface irradiance bias associated with each sample pair. Overcast low cloud conditions during the spring and fall seasons are identified as a major contributor. For samples with low cloud present in both observations and model, opposing surface irradiance biases are found for overcast and broken cloud cover conditions. A reduction of cloud liquid to a third for broken low clouds and an increase by a factor of 1.5 in overcast situations improves agreement with the observed liquid water path distribution. This approach of combining the model shortwave bias with a cloud classification helps to identify compensating errors in the model, providing guidance for a targeted improvement of cloud parameterizations.

Full access
Maike Ahlgrimm and Martin Köhler

Abstract

Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) are used to assess trade cumulus cloudiness in three versions of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts. The observations are recast onto the model grid, and two simple threshold criteria for cloud-top height and cloud fraction are used to identify grid points containing trade cumulus clouds. The cloud fraction and cloud-top height distributions of the sample populations are then compared. Results show that all versions of the model overestimate the frequency of occurrence of trade cumulus clouds but underestimate their cloud fraction when present. These effects partially compensate. Cloud-top heights are overestimated in model cycles using the modified Tiedtke parameterization for shallow convection, but are in very good agreement with observations when the dual mass flux parameterization is introduced.

Full access
Maike Ahlgrimm and Richard Forbes

Abstract

In this study, the representation of marine boundary layer clouds is investigated in the ECMWF model using observations from the Atmospheric Radiation Measurement (ARM) mobile facility deployment to Graciosa Island in the North Atlantic. Systematic errors in the occurrence of clouds, liquid water path, precipitation, and surface radiation are assessed in the operational model for a 19-month-long period. Boundary layer clouds were the most frequently observed cloud type but were underestimated by 10% in the model. Systematic but partially compensating surface radiation errors exist and can be linked to opposing cloud cover and liquid water path errors in broken (shallow cumulus) and overcast (stratocumulus) low-cloud regimes, consistent with previously reported results from the continental ARM Southern Great Plains (SGP) site. Occurrence of precipitation is overestimated by a factor of 1.5 at cloud base and by a factor of 2 at the surface, suggesting deficiencies in both the warm-rain formation and subcloud evaporation parameterizations. A single-column version of the ECMWF model is used to test combined changes to the parameterizations of boundary layer, autoconversion/accretion, and rain evaporation processes at Graciosa. Low-cloud occurrence, liquid water path, radiation biases, and precipitation occurrence are all significantly improved when compared to the ARM observations. Initial results from the modified parameterizations in the full model show improvement in the global top-of-the-atmosphere shortwave radiation, suggesting the reduced errors in the comparison at Graciosa are more widely applicable to boundary layer cloud around the globe.

Full access
Maike Ahlgrimm and David A. Randall

Abstract

The mixed-layer approach to modeling the planetary boundary layer (PBL) is particularly well suited to inversion-topped PBLs, such as the stratocumulus-topped boundary layer found off the west coast of America in the subtropical Pacific Ocean at northern and southern latitudes. However, a strong temperature inversion near 850 hPa (the trade wind inversion) is not confined to the stratocumulus regimes, but has been observed over most parts of the subtropical–tropical Pacific Ocean. In this paper, the authors test the ability of a simple bulk boundary layer model (BBLM) to diagnose entrainment velocity, cumulus mass flux, and surface latent heat flux from monthly mean reanalysis data. The PBL depth is estimated from Geoscience Laser Altimeter System data. The model is based on the conservation equations for mass, total water mixing ratio, and moist static energy.

The BBLM diagnoses entrainment velocities between 1 and 8 mm s−1 in the stratocumulus and trade wind regions, with increasing rates toward the west. Large cumulus mass fluxes (1.3–2 cm s−1) mark the ITCZ and South Pacific convergence zone. Unreasonably large surface latent heat fluxes are diagnosed in regions where the vertical resolution of both model and input data are insufficient to represent the sharp gradients of moist conservable variables and winds across the PBL top. The results demonstrate that the potential exists to extract useful information about the large-scale structure of PBL physical processes by combining available observations with simple models.

Full access
Richard M. Forbes and Maike Ahlgrimm

Abstract

Supercooled liquid water (SLW) layers in boundary layer clouds are abundantly observed in the atmosphere at high latitudes, but remain a challenge to represent in numerical weather prediction (NWP) and climate models. Unresolved processes such as small-scale turbulence and mixed-phase microphysics act to maintain the liquid layer at cloud top, directly affecting cloud radiative properties and prolonging cloud lifetimes. This paper describes the representation of supercooled liquid water in boundary layer clouds in the European Centre for Medium-Range Weather Forecasts (ECMWF) global NWP model and in particular the change from a diagnostic temperature-dependent mixed phase to a prognostic representation with separate cloud liquid and ice variables. Data from the Atmospheric Radiation Measurement site in Alaska and from the CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite missions are used to evaluate the model parameterizations. The prognostic scheme shows a more realistic cloud structure, with an SLW layer at cloud top and ice falling out below. However, because of the limited vertical and horizontal resolution and uncertainties in the parameterization of physical processes near cloud top, the change leads to an overall reduction in SLW water with a detrimental impact on shortwave and longwave radiative fluxes, and increased 2-m temperature errors over land. A reduction in the ice deposition rate at cloud top significantly improves the SLW occurrence and radiative impacts, and highlights the need for improved understanding and parameterization of physical processes for mixed-phase cloud in large-scale models.

Full access
Maike Ahlgrimm, David A. Randall, and Martin Köhler

Abstract

A strategy for model evaluation using spaceborne lidar observations is presented. Observations from the Geoscience Laser Altimeter System are recast onto the model grid to assess the ability of two versions of the Integrated Forecasting System to model marine stratocumulus clouds. The two model versions differ primarily in their treatment of clear and cloudy boundary layers. For each grid column, a representative cloud fraction and cloud-top height are derived from the observations, as well as from the model. By applying the same threshold criteria for cloud fraction and cloud-top height independently to model and observations, samples containing marine stratocumulus clouds can be identified. The frequency of occurrence, cloud fraction, and cloud-top height distributions for all samples thus identified are compared. The evaluation shows improvements in the frequency of occurrence and cloud-top height of marine stratocumulus, though modeled cloud tops remain lower than observed. Additional runs reveal a sensitivity to the strength of the environmental mixing that occurs during the test parcel ascent of the boundary layer parameterization. With a more aggressive parcel, the modeled clouds agree even better with observations.

Full access
Mirjana Sakradzija, Fabian Senf, Leonhard Scheck, Maike Ahlgrimm, and Daniel Klocke

Abstract

The local impact of stochastic shallow convection on clouds and precipitation is tested in a case study over the tropical Atlantic on 20 December 2013 using the Icosahedral Nonhydrostatic Model (ICON). ICON is used at a grid resolution of 2.5 km and is tested in several configurations that differ in their treatment of shallow convection. A stochastic shallow convection scheme is compared to the operational deterministic scheme and a case with no representation of shallow convection. The model is evaluated by comparing synthetically generated irradiance data for both visible and infrared wavelengths against actual satellite observations. The experimental approach is designed to distinguish the local effects of parameterized shallow convection (or lack thereof) within the trades versus the ITCZ. The stochastic cases prove to be superior in reproducing low-level cloud cover, deep convection, and its organization, as well as the distribution of precipitation in the tropical Atlantic ITCZ. In these cases, convective heating in the subcloud layer is substantial, and boundary layer depth is increased as a result of the heating, while evaporation is enhanced at the expense of sensible heat flux at the ocean’s surface. The stochastic case where subgrid shallow convection is deactivated below the resolved deep updrafts indicates that local boundary layer convection is crucial for a better representation of deep convection. Based on these results, our study points to a necessity to further develop parameterizations of shallow convection for use at the convection-permitting resolutions and to assuredly include them in weather and climate models even as their imperfect versions.

Restricted access
Maike Ahlgrimm, Richard M. Forbes, Jean-Jacques Morcrette, and Roel A. J. Neggers
Full access
Heike Kalesse, Gijs de Boer, Amy Solomon, Mariko Oue, Maike Ahlgrimm, Damao Zhang, Matthew D. Shupe, Edward Luke, and Alain Protat

Abstract

Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. In high latitudes, these cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to be caused by several main factors. Major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). For an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.

Full access