Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Maike Sonnewald x
  • All content x
Clear All Modify Search
Maike Sonnewald, Carl Wunsch, and Patrick Heimbach


A benchmark of linear predictability of sea surface height (SSH) globally is presented, complementing more complicated studies of SSH predictability. Twenty years of the Estimating the Circulation and Climate of the Ocean (ECCOv4) state estimate (1992–2011) are used, fitting autoregressive moving average [ARMA()] models where the order of the coefficients is chosen by the Akaike information criteria (AIC). Up to 50% of the ocean SSH variability is dominated by the seasonal signal. The variance accounted for by the nonseasonal SSH is particularly distinct in the Southern and Pacific Oceans, containing >95% of the total SSH variance, and the expected prediction error growth takes a few months to reach a threshold of 1 cm. Isolated regions take 12 months or more to cross an accuracy threshold of 1 cm. Including the trend significantly increases the time taken to reach the threshold, particularly in the South Pacific. Annual averaging has expected prediction error growth of a few years to reach a threshold of 1 cm. Including the trend mainly increases the time taken to reach the threshold, but the time series is short and noisy.

Open access
Isabela Alexander-Astiz Le Bras, Maike Sonnewald, and John M. Toole


To ground truth the large-scale dynamical balance of the North Atlantic subtropical gyre with observations, a barotropic vorticity budget is constructed in the ECCO state estimate and compared with hydrographic observations and wind stress data products. The hydrographic dataset at the center of this work is the A22 WOCE section, which lies along 66°W and creates a closed volume with the North and South American coasts to its west. The planetary vorticity flux across A22 is quantified, providing a metric for the net meridional flow in the western subtropical gyre. The wind stress forcing over the subtropical gyre to the west and east of the A22 section is calculated from several wind stress data products. These observational budget terms are found to be consistent with an approximate barotropic Sverdrup balance in the eastern subtropical gyre and are on the same order as budget terms in the ECCO state estimate. The ECCO vorticity budget is closed by bottom pressure torques in the western subtropical gyre, which is consistent with previous studies. In sum, the analysis provides observational ground truth for the North Atlantic subtropical vorticity balance and explores the seasonal variability of this balance for the first time using the ECCO state estimate. This balance is found to hold on monthly time scales in ECCO, suggesting that the integrated subtropical gyre responds to forcing through fast barotropic adjustment.

Full access