Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Malte Müller x
  • All content x
Clear All Modify Search
Karianne Ødemark, Malte Müller, and Ole Einar Tveito

Abstract

This article presents a conceptual study toward establishing a new method for altering lateral boundary conditions in numerical model based estimates for probable maximum precipitation (PMP). We altered an extreme event in a physically and dynamically consistent way in a regional convective-scale weather prediction model (AROME-MetCoOp) by applying fields from a global ensemble climate model approach based on EC-EARTH. Ten ensemble members are downscaled with the regional model, which results in 10 different realizations of an extreme precipitation event for the west coast of Norway. We show how the position and orientation of the moisture flow is different between the individual ensemble members, which leads to relatively large changes in precipitation values for a selected catchment. For example, the modification of the moisture transport on scales of several hundred kilometers impacts the extreme precipitation amount by about 75% among the model members. Compared with historical rainfall records, precipitation changes of 62% and 71% are found for two selected catchments. Although the present study is restricted to one particular extreme event that is modified 10 times with the ensemble approach, there is a considerable spread of the moisture transport compared to the spread of the moisture transport of extreme precipitation events of the past 40 years. We conclude that the described approach is a step toward a new method to derive PMP values for a given catchment; however, a larger amount of events and larger ensembles would have to be considered to estimate PMP values.

Open access
Zhuhua Li, Jin-Song von Storch, and Malte Müller

Abstract

Using a concurrent simulation of the ocean general circulation and tides with the ° Max Planck Institute Ocean Model (MPI-OM), known as STORMTIDE, this study provides a near-global quantification of the low-mode M2 internal tides. The quantification is based on wavelengths and their near-global distributions obtained by applying spectral analysis to STORMTIDE velocities and on comparisons of the distributions with those derived by solving the Sturm–Liouville eigenvalue problem. The simulated wavelengths, with respect to both their magnitudes and their geographical distributions, compare well with those obtained by solving the eigenvalue problem, suggesting that the STORMTIDE internal waves are, to a first approximation, linear internal waves satisfying local dispersion relations. The simulated wavelengths of modes 1 and 2 range within 100–160 and 45–80 km, respectively. Their distributions reveal, to different degrees for both modes, a zonal asymmetry and a tendency of a poleward increase with stratification N and the Coriolis parameter f being responsible for these two features, respectively. Distributions of mode 1 wavelengths are found to be determined by both N and f, but those of mode 2 are mainly controlled by variations in N. Larger differences between the STORMTIDE wavelengths and those of the eigenvalue problem occur, particularly for mode 2, primarily in high-latitude oceans and the Kuroshio and Gulf Stream and their extensions.

Full access
Trine J. Hegdahl, Kolbjørn Engeland, Malte Müller, and Jana Sillmann

Abstract

The aim of this study is to investigate extreme precipitation events caused by atmospheric rivers and compare their flood impact in a warmer climate to current climate using an event-based storyline approach. The study was set up by selecting four high-precipitation events from 30 years of present and future climate simulations of the high-resolution global climate model EC-Earth. The two most extreme precipitation events within the selection area for the present and future climate were identified, and EC-Earth was rerun creating 10 perturbed realizations for each event. All realizations were further downscaled with the regional weather prediction model, AROME-MetCoOp. The events were thereafter used as input to the operational Norwegian flood-forecasting model for 37 selected catchments in western Norway, and the magnitude and the spatial pattern of floods were analyzed. The role of the hydrological initial conditions, which are important for the total flooding, were analyzed with a special emphasis on snow and soil moisture excess. The results show that the selected future extreme precipitation events affected more catchments with larger floods, compared to the events from present climate. In addition, multiple realizations of the meteorological forcing and four different hydrological initial conditions, for example, soil saturation and snow storage, were important for the estimation of the maximum flood level. The meteorological forcing (e.g., the internal variability/perturbed output) accounts for the highest contribution to the spread in flood magnitude; however, for some events and catchments the hydrological initial conditions affected the magnitudes of floods more than the meteorological forcing.

Open access
Malte Müller, Yurii Batrak, Jørn Kristiansen, Morten A. Ø. Køltzow, Gunnar Noer, and Anton Korosov

Abstract

In this study a 1-yr dataset of a convective-scale atmospheric prediction system of the European Arctic (AROME-Arctic) is compared with the ECMWF’s medium-range forecasting, ensemble forecasting, and reanalysis systems, by using surface and radiosonde observations of wind and temperature. The focus is on the characteristics of the model systems in the very short-term forecast range (6–15 h), but without a specific focus on lead-time dependencies. In general, AROME-Arctic adds value to the representation of the surface characteristics. The atmospheric boundary layer thickness, during stable conditions, is overestimated in the global models, presumably because of a too diffusive turbulence scheme. Instead, AROME-Arctic shows a realistic mean thickness compared to the radiosonde observations. All models behave similarly for the upper-air verification and surprisingly, as well, in forecasting the location of a polar low in the short-range forecasts. However, when comparing with the largest wind speeds from ocean surface winds and at coastal synoptic weather stations during landfall of a polar low, AROME-Arctic shows the most realistic values. In addition to the model intercomparison, the limitation of the representation of sea ice and ocean surface characteristics on kilometer scales are discussed in detail. This major challenge is illustrated by showing the rapid drift and development of sea ice leads during a cold-air outbreak. As well, the available sea surface temperature products and a high-resolution ocean model result are compared qualitatively. New developments of satellite products, ocean–sea ice prediction models, or parameterizations, tailored toward high-resolution atmospheric Arctic prediction, are necessary to overcome this limitation.

Open access
Aaron W. Skiba, Libo Zeng, Brian K. Arbic, Malte Müller, and William J. Godwin

Abstract

The resonance of diurnal tidal elevations is investigated with a forward ocean tide model run in a realistic near-global domain and a synthesis of free oscillations (normal modes) computed for realistic global ocean geometries and ocean physics. As a prelude to performing the forward ocean tide simulations, the topographic wave drag, which is now commonly employed in forward ocean tide models, is tuned specifically for diurnal tides. The synthesis of global free oscillations predicts reasonably well the forward ocean diurnal tide model sensitivity to changes in the frequency, zonal structure, and meridional structure of the astronomical diurnal tidal forcing. Three global free oscillations that are important for understanding diurnal tides as a superposition of forced-damped, resonant, free oscillations are identified. An admittance analysis of the frequency sweep experiments demonstrates that some coastal locations such as the Sea of Okhotsk are resonant to diurnal tidal forcing. As in earlier work done with semidiurnal tides, a series of simulations are performed in which regions possessing significant coastal diurnal tides are blocked out. The largest perturbations to the open-ocean diurnal tides take place in Blocked Sea of Okhotsk experiments. Lesser but still significant perturbations also arise from the blocking out of other regions of large diurnal tidal elevations or dissipation. Interpretation of the results is made more complex, however, by the fact that substantial perturbations also arise from blocking out regions where neither tidal elevations nor dissipation are large. The “blocking” experiments are relevant to understanding tides of the ice age, during which lower sea levels entail a reduced area of continental shelves.

Full access
Guillaume Sérazin, Thierry Penduff, Bernard Barnier, Jean-Marc Molines, Brian K. Arbic, Malte Müller, and Laurent Terray

Abstract

A seasonally forced 1/12° global ocean/sea ice simulation is used to characterize the spatiotemporal inverse cascade of kinetic energy (KE). Nonlinear scale interactions associated with relative vorticity advection are evaluated using cross-spectral analysis in the frequency–wavenumber domain from sea level anomaly (SLA) time series. This analysis is applied within four eddy-active midlatitude regions having large intrinsic variability spread over a wide range of scales. Over these four regions, mesoscale surface KE is shown to spontaneously cascade toward larger spatial scales—between the deformation scale and the Rhines scale—and longer time scales (possibly exceeding 10 years). Other nonlinear processes might have to be invoked to explain the longer time scales of intrinsic variability, which have a substantial surface imprint at midlatitudes. The analysis of a fully forced 1/12° hindcast shows that low-frequency and synoptic atmospheric forcing barely affects this inverse KE cascade. The inverse cascade is also at work in a 1/4° simulation, albeit with a weaker intensity, consistent with the weaker intrinsic variability found at this coarser resolution. In the midlatitude North Pacific, the spatiotemporal cascade transfers KE from high-frequency frontal Rossby waves (FRWs), probably generated by baroclinic instability, toward the lower-frequency, westward-propagating mesoscale eddy (WME) field. The WMEs provide local gradients of potential vorticity that support these short Doppler-shifted FRWs. FRWs have periods shorter than 2 months and might be subsampled by altimetric observations, perhaps explaining why the temporal inverse cascade deduced from high-resolution models and mapped altimeter products can be quite different. The nature of the nonlinear interactions between FRWs and WMEs remains unclear but might involve wave turbulence processes.

Full access
Brian K. Arbic, Malte Müller, James G. Richman, Jay F. Shriver, Andrew J. Morten, Robert B. Scott, Guillaume Sérazin, and Thierry Penduff

Abstract

Motivated by the potential of oceanic mesoscale eddies to drive intrinsic low-frequency variability, this paper examines geostrophic turbulence in the frequency–wavenumber domain. Frequency–wavenumber spectra, spectral fluxes, and spectral transfers are computed from an idealized two-layer quasigeostrophic (QG) turbulence model, a realistic high-resolution global ocean general circulation model, and gridded satellite altimeter products. In the idealized QG model, energy in low wavenumbers, arising from nonlinear interactions via the well-known inverse cascade, is associated with energy in low frequencies and vice versa, although not in a simple way. The range of frequencies that are highly energized and engaged in nonlinear transfer is much greater than the range of highly energized and engaged wavenumbers. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing and friction playing important but secondary roles. In the high-resolution ocean model, nonlinearities also generally drive kinetic energy to low frequencies as well as to low wavenumbers. Implications for the maintenance of low-frequency oceanic variability are discussed. The cascade of surface kinetic energy to low frequencies that predominates in idealized and realistic models is seen in some regions of the gridded altimeter product, but not in others. Exercises conducted with the general circulation model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies between the direction of the frequency cascade in models versus gridded altimeter maps seen in some regions. Of course, another potential reason for the discrepancy is missing physics in the models utilized here.

Full access
Malte Müller, Mariken Homleid, Karl-Ivar Ivarsson, Morten A. Ø. Køltzow, Magnus Lindskog, Knut Helge Midtbø, Ulf Andrae, Trygve Aspelien, Lars Berggren, Dag Bjørge, Per Dahlgren, Jørn Kristiansen, Roger Randriamampianina, Martin Ridal, and Ole Vignes

Abstract

Since October 2013 a convective-scale weather prediction model has been used operationally to provide short-term forecasts covering large parts of the Nordic region. The model is now operated by a bilateral cooperative effort [Meteorological Cooperation on Operational Numerical Weather Prediction (MetCoOp)] between the Norwegian Meteorological Institute and the Swedish Meteorological and Hydrological Institute. The core of the model is based on the convection-permitting Applications of Research to Operations at Mesoscale (AROME) model developed by Météo-France. In this paper the specific modifications and updates that have been made to suit advanced high-resolution weather forecasts over the Nordic regions are described. This includes modifications in the surface drag description, microphysics, snow assimilation, as well as an update of the ecosystem and surface parameter description. Novel observation types are introduced in the operational runs, including ground-based Global Navigation Satellite System (GNSS) observations and radar reflectivity data from the Norwegian and Swedish radar networks. After almost two years’ worth of experience with the AROME-MetCoOp model, the model’s sensitivities to the use of specific parameterization settings are characterized and the forecast skills demonstrating the benefit as compared with the global European Centre for Medium-Range Weather Forecasts’ Integrated Forecasting System (ECMWF-IFS) are evaluated. Furthermore, case studies are provided to demonstrate the ability of the model to capture extreme precipitation and wind events.

Full access