Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Mampi Sarkar x
  • Refine by Access: All Content x
Clear All Modify Search
Mampi Sarkar, Paquita Zuidema, and Virendra Ghate


Precipitation is a key process within the shallow cloud life cycle. The Cloud System Evolution in the Trades (CSET) campaign included the first deployment of a 94-GHz Doppler radar and 532-nm lidar. Despite a larger sampling volume, initial mean radar/lidar-retrieved rain rates based on the upward-pointing remote sensor datasets are systematically less than those measured by in situ precipitation probes in the cumulus regime. Subsequent retrieval improvements produce rain rates that compare better to in situ values but still underestimate them. Retrieved shallow cumulus drop sizes can remain too small and too few, with an overestimated shape parameter narrowing the raindrop size distribution too much. Three potential causes for the discrepancy are explored: the gamma functional fit to the drop size distribution, attenuation by rain and cloud water, and an underaccounting of Mie dampening of the reflectivity. A truncated exponential fit may represent the drop sizes below a showering cumulus cloud more realistically, although further work would be needed to fully evaluate the impact of a different drop size representation upon the retrieval. The rain attenuation is within the measurement uncertainty of the radar. Mie dampening of the reflectivity is shown to be significant, in contrast to previous stratocumulus campaigns with lighter rain rates, and may be difficult to constrain well with the remote measurements. An alternative approach combines an a priori determination of the drop size distribution width based on the in situ data with the mean radar Doppler velocity and reflectivity. This can produce realistic retrievals, although a more comprehensive assessment is needed to better characterize the retrieval errors.

Restricted access
Mampi Sarkar, Paquita Zuidema, Bruce Albrecht, Virendra Ghate, Jorgen Jensen, Johannes Mohrmann, and Robert Wood


Three genuine stratocumulus-to-cumulus transitions sampled during the Cloud System Evolution over the Trades (CSET) campaign are documented. The focus is on Lagrangian evolution of in situ precipitation, thought to exceed radar/lidar retrieved values because of Mie scattering. Two of the three initial stratocumulus cases are pristine [cloud droplet number concentrations (N d) of ~22 cm−3] but occupied boundary layers of different depths, while the third is polluted (N d ~ 225 cm−3). Hourly satellite-derived cloud fraction along Lagrangian trajectories indicate that more quickly deepening boundary layers tend to transition faster, into more intense but more occasional precipitation. These transitions begin either in the morning or late afternoon, suggesting that preceding night processes can precondition or delay the inevitable transition. The precipitation shifts toward larger drop sizes throughout the transition as the boundary layers deepen, with aerosol concentrations only diminishing in two of the three cases. Ultraclean (N d < 1 cm−3) cumulus clouds evolved from pristine stratocumulus cloud with unusually high precipitation rates occupying a shallow, well-mixed boundary layer. Results from a simple one-dimensional evaporation model and from radar/lidar retrievals suggest subcloud evaporation likely increases throughout the transition. This, coupled with larger drop sizes capable of lowering the latent cooling profile, facilitates the transition to more surface-driven convection. The coassociation between boundary layer depth and precipitation does not provide definitive conclusions on the isolated effect of precipitation on the pace of the transition. Differences between the initial conditions of the three examples provide opportunities for further modeling studies.

Free access
Johannes Mohrmann, Christopher S. Bretherton, Isabel L. McCoy, Jeremy McGibbon, Robert Wood, Virendra Ghate, Bruce Albrecht, Mampi Sarkar, Paquita Zuidema, and Rabindra Palikonda


Flight data from the Cloud System Evolution over the Trades (CSET) campaign over the Pacific stratocumulus-to-cumulus transition are organized into 18 Lagrangian cases suitable for study and future modeling, made possible by the use of a track-and-resample flight strategy. Analysis of these cases shows that 2-day Lagrangian coherence of long-lived species (CO and O3) is high (r = 0.93 and 0.73, respectively), but that of subcloud aerosol, MBL depth, and cloud properties is limited. Although they span a wide range in meteorological conditions, most sampled air masses show a clear transition when considering 2-day changes in cloudiness (−31% averaged over all cases), MBL depth (+560 m), estimated inversion strength (EIS; −2.2 K), and decoupling, agreeing with previous satellite studies and theory. Changes in precipitation and droplet number were less consistent. The aircraft-based analysis is augmented by geostationary satellite retrievals and reanalysis data along Lagrangian trajectories between aircraft sampling times, documenting the evolution of cloud fraction, cloud droplet number concentration, EIS, and MBL depth. An expanded trajectory set spanning the summer of 2015 is used to show that the CSET-sampled air masses were representative of the season, with respect to EIS and cloud fraction. Two Lagrangian case studies attractive for future modeling are presented with aircraft and satellite data. The first features a clear Sc–Cu transition involving MBL deepening and decoupling with decreasing cloud fraction, and the second undergoes a much slower cloud evolution despite a greater initial depth and decoupling state. Potential causes for the differences in evolution are explored, including free-tropospheric humidity, subsidence, surface fluxes, and microphysics.

Free access
Bruce Albrecht, Virendra Ghate, Johannes Mohrmann, Robert Wood, Paquita Zuidema, Christopher Bretherton, Christian Schwartz, Edwin Eloranta, Susanne Glienke, Shaunna Donaher, Mampi Sarkar, Jeremy McGibbon, Alison D. Nugent, Raymond A. Shaw, Jacob Fugal, Patrick Minnis, Robindra Paliknoda, Louis Lussier, Jorgen Jensen, J. Vivekanandan, Scott Ellis, Peisang Tsai, Robert Rilling, Julie Haggerty, Teresa Campos, Meghan Stell, Michael Reeves, Stuart Beaton, John Allison, Gregory Stossmeister, Samuel Hall, and Sebastian Schmidt


The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the North Pacific trade winds. The study centered on seven round trips of the National Science Foundation–National Center for Atmospheric Research (NSF–NCAR) Gulfstream V (GV) between Sacramento, California, and Kona, Hawaii, between 7 July and 9 August 2015. The CSET observing strategy was to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. Global Forecast System forecast trajectories were used to plan the outbound flight to Hawaii with updated forecast trajectories setting the return flight plan two days later. Two key elements of the CSET observing system were the newly developed High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Cloud Radar (HCR) and the high-spectral-resolution lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud, and precipitation structures that were combined with in situ measurements of aerosol, cloud, precipitation, and turbulence properties. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale cloud–precipitation complexes, and patches of shallow cumuli in very clean environments. Ultraclean layers observed frequently near the top of the boundary layer were often associated with shallow, optically thin, layered veil clouds. The extensive aerosol, cloud, drizzle, and boundary layer sampling made over open areas of the northeast Pacific along 2-day trajectories during CSET will be an invaluable resource for modeling studies of boundary layer cloud system evolution and its governing physical processes.

Open access