Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Manuel D. Zuluaga x
  • Refine by Access: All Content x
Clear All Modify Search
Manuel D. Zuluaga and Robert A. Houze Jr.

Abstract

Three-dimensional radar reflectivity fields from a dual-wavelength Doppler polarimetric radar (S-PolKa) deployed in the equatorial Indian Ocean are used to evaluate the composition of the population of convective cloud elements during active phases of the MJO. Rainfall in active periods was intermittent, occurring in 11 episodes of about 2–4 days, separated by several nonrainy days. Data for these 2-day periods were composited relative to the time of maximum rainfall. Analysis of the S-PolKa data shows the makeup of the convective population during the rainfall episodes. Four types of echo structures were analyzed statistically for the 11 rainfall episodes: shallow convective echoes (SCE), deep convective cores (DCC), wide convective echo cores (WCC), and broad stratiform (BSR) echo regions. SCE and DCC events were most frequent before the maximum rainfall, with the peak frequency of SCE leading that of DCCs. WCCs were most frequent during the rainfall maximum, and BSR regions were most frequent in the later part of the rainfall episode. Composited ECMWF Interim Re-Analysis (ERA-Interim) data and 3-hourly atmospheric soundings indicate that the 2–4-day episodes were related to the passage of equatorial waves. In the early part of a rainfall episode, the wave-passage conditions were unstable, favoring deep penetrating convective elements, while in the later period the wave divergence profile was commensurate with convective systems in late anvil-producing stages. These results support the stretched building-block notion of the life cycle of tropical convection and confirm satellite-based interpretations of SCE, DCC, WCC, and BSR statistics in the composition of the convective population.

Full access
Manuel D. Zuluaga and Robert A. Houze Jr.

Abstract

This study documents the preferred location and diurnal cycle of extreme convective storms that occur in the tropical band containing the east Pacific Ocean, Central and South America, the Atlantic Ocean, and northern Africa. Data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar show three types of convective-stratiform structures that constitute extreme convective events: deep convective cores (DCCs), wide convective cores (WCCs), and broad stratiform regions (BSRs). Interim ECMWF Re-Analysis (ERA-Interim) data show the associated synoptic environmental factors associated with the occurrence of extreme convective features. The DCC, WCC, and BSR echoes are associated with early, middle, and late stages of convective system development, respectively, and the statistics and timing of their occurrence are related to topography and life cycle behavior of the convection. Storms containing DCC occur primarily over the Sudanian savannas of Africa and near the mountains in northern South America, being diurnally controlled. Storms with WCC manifest over land, in the same regions as the DCC, but also over oceanic regions. They appear around the clock but with maximum frequency at night. They are favored in regions of midlevel synoptic-scale low pressure systems, which over the sub-Sahara are the troughs of easterly waves. Storms containing BSR maximize over oceanic regions west of Africa and South America, where they exhibit a weak diurnal cycle with a slight midmorning maximum. Off the west coast of South America, the storms with WCC and BSR have longer lifetimes enhanced by orographic lifting over the Andes. The storms with BSR in the east Pacific Ocean often develop into tropical cyclones.

Full access
Manuel D. Zuluaga, Carlos D. Hoyos, and Peter J. Webster

Abstract

Information from the Tropical Rainfall Measuring Mission (TRMM) level 3 monthly 0.5° × 0.5° Convective and Stratiform Heating (CSH) product and TRMM Microwave Imager (TMI) 2A12 datasets is used to examine the four-dimensional latent heating (LH) structure over the Asian monsoon region between 1998 and 2006. High sea surface temperatures, ocean–land contrasts, and complex terrain produce large precipitation and atmospheric heating rates whose spatial and temporal characteristics are relatively undocumented. Analyses show interannual and intraseasonal LH variations with a large fraction of the interannual variability induced by internal intraseasonal variability. Also, the analyses identify a spatial dipole of LH anomalies between the equatorial Indian Ocean and the Bay of Bengal regions occurring during the summer active and suppressed phases of the monsoon intraseasonal oscillation. Comparisons made between the TRMM CSH and TMI 2A12 datasets indicate differences in the shape of the vertical profile of LH. A comparison of TRMM LH retrievals with sounding budget observations made during the South China Sea Monsoon Experiment shows a high correspondence in the timing of positive LH episodes during the rainy periods. Negative values of atmospheric heating, associated with radiative cooling and with upper-tropospheric cooling from nonsurface-precipitating clouds, are not captured by either of the TRMM datasets. In summary, LH algorithms based on satellite information are capable of representing the spatial and temporal characteristics of the vertically integrated heating in the Asian monsoon region. However, the vertical distribution of atmospheric heating is not captured accurately throughout different convective phases. It is suggested that satellite-derived radiative heating/cooling products are needed to supplement the LH products in order to give a better overall depiction of atmospheric heating.

Full access
Angela K. Rowe, Robert A. Houze Jr, Stacy Brodzik, and Manuel D. Zuluaga

Abstract

The Madden–Julian oscillation (MJO) dominates the intraseasonal variability of cloud populations of the tropical Indian and Pacific Oceans. Suppressed MJO periods consist primarily of shallow and isolated deep convection. During the transition to an active MJO, the shallow and isolated deep clouds grow upscale into the overnight hours. During active MJO periods, mesoscale convective systems occur mostly during 2–4-day bursts of rainfall activity with a statistically significant early morning peak. Yet when these rain events are separated into individual active periods, some periods do not follow the mean pattern, with the November events in particular exhibiting an afternoon peak. The radar-observed microphysical processes producing the precipitation during the major rain events of active MJO periods evolve in connection with synoptic-scale wave passages with varying influences of diurnal forcing. MJO studies that do not account for the intermittency of rainfall during active MJO phases through averaging over multiple events can lead to the misimpression that the primary rain-producing clouds of the MJO are modulated solely by the diurnal cycle.

Open access