Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Marcelino Q. Villafuerte x
  • All content x
Clear All Modify Search
Marcelino Q. Villafuerte II and Jun Matsumoto

Abstract

This study investigates the changes in annual and seasonal maximum daily rainfall (RX1day) in Southeast Asia, obtained from gauge-based gridded precipitation data, to address the increasing concerns about climate change in the region. First, the nonparametric Mann–Kendall test was employed to detect significant trends in RX1day. Then, maximum likelihood modeling, which allows the incorporation of covariates in the location parameter of the generalized extreme value (GEV) distribution, was conducted to determine whether the rising global mean temperature, as well as El Niño–Southern Oscillation (ENSO), is influencing extreme rainfall over the region. The findings revealed that annual and seasonal RX1day is significantly increasing in Indochina and east-central Philippines while decreasing in most parts of the Maritime Continent during the past 57 yr (1951–2007). The trends in RX1day were further linked to the rising global mean temperature. It was shown that the location parameter of the GEV—and hence the RX1day on average—has significantly covaried with the annually averaged near-surface global mean temperature anomaly. Such covariation is pronouncedly observed over the regions where significant trends in RX1day were detected. Furthermore, the results demonstrated that, as ENSO develops in July–September, negative covariations between the location parameter of the GEV and the ENSO index, implying a higher (lower) likelihood of extreme rainfall during La Niña (El Niño), were observed over the Maritime Continent. Such conditions progress northward to the regions of Indochina and the Philippines as ENSO approaches its maturity in October–December and then retreat southward as the ENSO weakens in the ensuing seasons.

Full access
Florian Rauser, Mohammad Alqadi, Steve Arowolo, Noël Baker, Joel Bedard, Erik Behrens, Nilay Dogulu, Lucas Gatti Domingues, Ariane Frassoni, Julia Keller, Sarah Kirkpatrick, Gaby Langendijk, Masoumeh Mirsafa, Salauddin Mohammad, Ann Kristin Naumann, Marisol Osman, Kevin Reed, Marion Rothmüller, Vera Schemann, Awnesh Singh, Sebastian Sonntag, Fiona Tummon, Dike Victor, Marcelino Q. Villafuerte, Jakub P. Walawender, and Modathir Zaroug

Abstract

The exigencies of the global community toward Earth system science will increase in the future as the human population, economies, and the human footprint on the planet continue to grow. This growth, combined with intensifying urbanization, will inevitably exert increasing pressure on all ecosystem services. A unified interdisciplinary approach to Earth system science is required that can address this challenge, integrate technical demands and long-term visions, and reconcile user demands with scientific feasibility. Together with the research arms of the World Meteorological Organization, the Young Earth System Scientists community has gathered early-career scientists from around the world to initiate a discussion about frontiers of Earth system science. To provide optimal information for society, Earth system science has to provide a comprehensive understanding of the physical processes that drive the Earth system and anthropogenic influences. This understanding will be reflected in seamless prediction systems for environmental processes that are robust and instructive to local users on all scales. Such prediction systems require improved physical process understanding, more high-resolution global observations, and advanced modeling capability, as well as high-performance computing on unprecedented scales. At the same time, the robustness and usability of such prediction systems also depend on deepening our understanding of the entire Earth system and improved communication between end users and researchers. Earth system science is the fundamental baseline for understanding the Earth’s capacity to accommodate humanity, and it provides a means to have a rational discussion about the consequences and limits of anthropogenic influence on Earth. Without its progress, truly sustainable development will be impossible.

Full access