Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Marco Talone x
  • All content x
Clear All Modify Search
Giuseppe Zibordi, Marco Talone, and Lukasz Jankowski

Abstract

The response to temperature of sample hyperspectral radiometers commonly used to support the validation of satellite ocean color data was characterized in the 400–800-nm spectral range. Measurements performed in the 10°–40°C interval at 5°C increments showed mean temperature coefficients varying from −0.04 × 10−2 (°C)−1 at 400 nm to +0.33 × 10−2 (°C)−1 at 800 nm, which are largely explained by the temperature coefficient of the photodetector array constituting the core of the sensor. Overall, the results indicate the possibility of applying temperature corrections with an uncertainty of approximately 0.03 × 10−2 (°C)−1 for the class of hyperspectral radiometers investigated in the study.

Full access
Giuseppe Zibordi, Brent N. Holben, Marco Talone, Davide D’Alimonte, Ilya Slutsker, David M. Giles, and Mikhail G. Sorokin

Abstract

The Ocean Color component of the Aerosol Robotic Network (AERONET-OC) supports ocean color related activities such as validation of satellite data products, assessment of atmospheric correction schemes and evaluation of bio-optical models, through globally distributed standardized measurements of water-leaving radiance and aerosol optical depth. In view of duly assisting the AERONET-OC data user community, this work: i. summarizes the latest investigations on a number of scientific issues related to above-water radiometry; ii. emphasizes the network expansion that from 2002 till the end of 2020 integrated 31 effective measurement sites; iii. shows the equivalence of data product accuracy across sites and time for measurements performed with different instrument series; iv. illustrates the variety of water types represented by the network sites ensuring validation activities across a diversity of observation conditions; and v. finally documents the availability of water-leaving radiance data corrected for bidirectional effects applying a method specifically developed for chlorophyll-a dominated waters and an alternative one likely suitable for any water type.

Restricted access