Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Maria P. Cadeddu x
  • Refine by Access: All Content x
Clear All Modify Search
Jianhao Zhang, Paquita Zuidema, David D. Turner, and Maria P. Cadeddu

Abstract

The interactions between equatorial convection and humidity as a function of height, at a range of time scales, remain an important research frontier. The ability of surface-based microwave radiometry to contribute to such research is assessed using retrievals of the vertical structure of atmospheric humidity above the equatorial Indian Ocean, developed as part of the Dynamics of Madden–Julian Oscillation field campaign. The optimally estimated humidity retrievals are based on radiances at five frequencies spanning 20–30 GHz and are constrained by radiometer-derived water vapor paths that compare well to radiosonde values except in highly convective conditions. The moisture retrievals possess a robust 2 degrees of freedom, allowing the atmosphere to be treated as two independent layers. A mean bias of 1 g kg−1 contains a vertical structure that is removed in the assessments. The retrieved moisture profiles are able to capture humidity variability within two layer averages at intraseasonal, synoptic, and daily time scales. The retrieved humidity profiles at hourly scales are qualitatively correct under synoptically suppressed conditions but with an exaggerated vertical bimodality. The retrievals do not match radiosonde profiles within most of the day prior to/after convection. This analysis serves to better delineate applications for radiometers. Radiometers can usefully augment more expensive radiosonde networks for longer-term monitoring given careful cross-instrument calibration. At shorter time scales, a synergism with additional instruments can likely increase the realism of the retrievals.

Full access
Virendra P. Ghate, Maria P. Cadeddu, Xue Zheng, and Ewan O’Connor

Abstract

Marine stratocumulus clouds are intimately coupled to the turbulence in the boundary layer and drizzle is known to be ubiquitous within them. Six years of data collected at the Atmospheric Radiation Measurement’s (ARM) Eastern North Atlantic (ENA) site are utilized to characterize turbulence in the marine boundary layer and air motions below stratocumulus clouds. Profiles of variance of vertical velocity binned by wind direction (wdir) yielded that the boundary layer measurements are affected by the island when the wdir is between 90° and 310° (measured clockwise from the north from where air is coming). Data collected during the marine conditions (wdir < 90° or wdir > 310°) showed that the variance of vertical velocity was higher during the winter months than during the summer months because of higher cloudiness, wind speeds, and surface fluxes. During marine conditions the variance of vertical velocity and cloud fraction exhibited a distinct diurnal cycle with higher values during the nighttime than during the daytime. Detailed analysis of 32 cases of drizzling marine stratocumulus clouds showed that, for a similar amount of radiative cooling at the cloud top, within the subcloud layer 1) drizzle increasingly falls within downdrafts with increasing rain rates, 2) the strength of the downdrafts increases with increasing rain rates, and 3) the correlation between vertical air motion and rain rate is highest in the middle of the subcloud layer. The results presented herein have implications for climatological and model evaluation studies conducted at the ENA site, along with efforts to accurately represent drizzle–turbulence interactions in a range of atmospheric models.

Open access
Stefan Kneifel, Stephanie Redl, Emiliano Orlandi, Ulrich Löhnert, Maria P. Cadeddu, David D. Turner, and Ming-Tang Chen

Abstract

Microwave radiometers (MWR) are commonly used to quantify the amount of supercooled liquid water (SLW) in clouds; however, the accuracy of the SLW retrievals is limited by the poor knowledge of the SLW dielectric properties at microwave frequencies. Six liquid water permittivity models were compared with ground-based MWR observations between 31 and 225 GHz from sites in Greenland, the German Alps, and a low-mountain site; average cloud temperatures of observed thin cloud layers range from 0° to −33°C. A recently published method to derive ratios of liquid water opacity from different frequencies was employed in this analysis. These ratios are independent of liquid water path and equal to the ratio of α L at those frequencies that can be directly compared with the permittivity model predictions. The observed opacity ratios from all sites show highly consistent results that are generally within the range of model predictions; however, none of the models are able to approximate the observations over the entire frequency and temperature range. Findings in earlier published studies were used to select one specific model as a reference model for α L at 90 GHz; together with the observed opacity ratios, the temperature dependence of α L at 31.4, 52.28, 150, and 225 GHz was derived. The results reveal that two models fit the opacity ratio data better than the other four models, with one of the two models fitting the data better for frequencies below 90 GHz and the other for higher frequencies. These findings are relevant for SLW retrievals and radiative transfer in the 31–225-GHz frequency region.

Full access
G. Alexander Sokolowsky, Eugene E. Clothiaux, Cory F. Baggett, Sukyoung Lee, Steven B. Feldstein, Edwin W. Eloranta, Maria P. Cadeddu, Nitin Bharadwaj, and Karen L. Johnson

Abstract

Intrusions of warm, moist air into the Arctic during winter have emerged as important contributors to Arctic surface warming. Previous studies indicate that temperature, moisture, and hydrometeor enhancements during intrusions all make contributions to surface warming via emission of radiation down to the surface. Here, datasets from instrumentation at the Atmospheric Radiation Measurement User Facility in Utqiaġvik (formerly Barrow) for the six months from November through April for the six winter seasons of 2013/14–2018/19 were used to quantify the atmospheric state. These datasets subsequently served as inputs to compute surface downwelling longwave irradiances via radiative transfer computations at 1-min intervals with different combinations of constituents over the six winter seasons. The computed six winter average irradiance with all constituents included was 205.0 W m−2, close to the average measured irradiance of 206.7 W m−2, a difference of −0.8%. During this period, water vapor was the most important contributor to the irradiance. The computed average irradiance with dry gas was 71.9 W m−2. Separately adding water vapor, liquid, or ice to the dry atmosphere led to average increases of 2.4, 1.8, and 1.6 times the dry atmosphere irradiance, respectively. During the analysis period, 15 episodes of warm, moist air intrusions were identified. During the intrusions, individual contributions from elevated temperature, water vapor, liquid water, and ice water were found to be comparable to each other. These findings indicate that all properties of the atmospheric state must be known in order to quantify the radiation coming down to the Arctic surface during winter.

Free access
M. Christian Schwartz, Virendra P. Ghate, Bruce. A. Albrecht, Paquita Zuidema, Maria P. Cadeddu, Jothiram Vivekanandan, Scott M. Ellis, Pei Tsai, Edwin W. Eloranta, Johannes Mohrmann, Robert Wood, and Christopher S. Bretherton

Abstract

The Cloud System Evolution in the Trades (CSET) aircraft campaign was conducted in the summer of 2015 in the northeast Pacific to observe the transition from stratocumulus to cumulus cloud regime. Fourteen transects were made between Sacramento, California, and Kona, Hawaii, using the NCAR’s High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V (GV) aircraft. The HIAPER W-band Doppler cloud radar (HCR) and the high-spectral-resolution lidar (HSRL), in their first deployment together on board the GV, provided crucial cloud and precipitation observations. The HCR recorded the raw in-phase (I) and quadrature (Q) components of the digitized signal, from which the Doppler spectra and its first three moments were calculated. HCR/HSRL data were merged to develop a hydrometeor mask on a uniform georeferenced grid of 2-Hz temporal and 20-m vertical resolutions. The hydrometeors are classified as cloud or precipitation using a simple fuzzy logic technique based on the HCR mean Doppler velocity, HSRL backscatter, and the ratio of HCR reflectivity to HSRL backscatter. This is primarily applied during zenith-pointing conditions under which the lidar can detect the cloud base and the radar is more sensitive to clouds. The microphysical properties of below-cloud drizzle and optically thin clouds were retrieved using the HCR reflectivity, HSRL backscatter, and the HCR Doppler spectrum width after it is corrected for the aircraft speed. These indicate that as the boundary layers deepen and cloud-top heights increase toward the equator, both the cloud and rain fractions decrease.

Open access
Matthew D. Shupe, David D. Turner, Von P. Walden, Ralf Bennartz, Maria P. Cadeddu, Benjamin B. Castellani, Christopher J. Cox, David R. Hudak, Mark S. Kulie, Nathaniel B. Miller, Ryan R. Neely III, William D. Neff, and Penny M. Rowe

Cloud and atmospheric properties strongly influence the mass and energy budgets of the Greenland Ice Sheet (GIS). To address critical gaps in the understanding of these systems, a new suite of cloud- and atmosphere-observing instruments has been installed on the central GIS as part of the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit (ICECAPS) project. During the first 20 months in operation, this complementary suite of active and passive ground-based sensors and radiosondes has provided new and unique perspectives on important cloud–atmosphere properties.

High atop the GIS, the atmosphere is extremely dry and cold with strong near-surface static stability predominating throughout the year, particularly in winter. This low-level thermodynamic structure, coupled with frequent moisture inversions, conveys the importance of advection for local cloud and precipitation formation. Cloud liquid water is observed in all months of the year, even the particularly cold and dry winter, while annual cycle observations indicate that the largest atmospheric moisture amounts, cloud water contents, and snowfall occur in summer and under southwesterly flow. Many of the basic structural properties of clouds observed at Summit, Greenland, particularly for low-level stratiform clouds, are similar to their counterparts in other Arctic regions.

The ICECAPS observations and accompanying analyses will be used to improve the understanding of key cloud–atmosphere processes and the manner in which they interact with the GIS. Furthermore, they will facilitate model evaluation and development in this data-sparse but environmentally unique region.

Full access