Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Marie Drouard x
  • Refine by Access: All Content x
Clear All Modify Search
Gwendal Rivière
and
Marie Drouard

Abstract

Rapid onsets of positive and negative tropospheric northern annular mode (NAM) events during boreal winters are studied using ERA-Interim datasets. The NAM anomalies first appear in the North Pacific from low-frequency Rossby wave propagation initiated by anomalous convection in the western tropical Pacific around 2 weeks before the peak of the events. For negative NAM, the enhanced convection leads to a zonal acceleration of the Pacific jet, while for positive NAM, the reduced convection leads to a poleward-deviated jet in its exit region. The North Atlantic anomalies, which correspond to North Atlantic Oscillation (NAO) anomalies, are formed in close connection with the North Pacific anomalies via downstream propagation of low-frequency planetary-scale and high-frequency synoptic waves, the latter playing a major role during the last onset week. Prior to positive NAM, the generation of synoptic waves in the North Pacific and their downstream propagation is strong. The poleward-deviated Pacific jet favors a southeastward propagation of the waves across North America and anticyclonic breaking in the North Atlantic. The associated strong poleward eddy momentum fluxes push the Atlantic jet poleward and form the positive NAO phase. Conversely, prior to negative NAM, synoptic wave propagation across North America is significantly reduced and more zonal because of the more zonally oriented Pacific jet. This, together with a strong eddy generation in the North Atlantic, leads to equatorward eddy momentum fluxes, cyclonic wave breaking, and the formation of the negative NAO phase. Even though the stratosphere may play a role in some individual cases, it is not the main driver of the composited tropospheric NAM events.

Full access
Marie Drouard
and
Christophe Cassou

Abstract

Considerable uncertainties remain about the expected changes of ENSO and associated teleconnectivity as the climate is warming. Two ensembles of pacemaker experiments using the CNRM-CM5 coupled model are designed in a perfect model framework to contrast ENSO-forced teleconnectivity between the preindustrial period versus a warmer background state (obtained from a long stabilized simulation under late-twenty-first-century RCP8.5 constant forcing). The most notable sensitivity to the mean background state is found over the North Atlantic, where the ENSO–NAO teleconnection is considerably reinforced in a warmer world. We attribute this change to (i) a stronger and eastward-extended mean upper-level jet over the North Pacific, (ii) an eastward-shifted ENSO teleconnection over the North Pacific, and (iii) an equatorward-shifted and reinforced mean jet over the North Atlantic. These altogether act as a more efficient waveguide, leading to a better penetration of synoptic storms coming from the Pacific into the Atlantic. This downstream penetration into the North Atlantic basin forces more systematically the NAO through wave breaking. The reinforcement in the teleconnection is asymmetrical with respect to the ENSO phase and is mainly sensitive to La Niña events. Even though the Pacific jet tends to retract westward and move northward during cold events, mean changes are such that both Pacific and Atlantic jets remain connected in a warmer climate by contrast to the preindustrial period, thus ensuring preferred anticyclonic wave breaking downstream over the North Atlantic leading ultimately to NAO+ events.

Full access
Marie Drouard
,
Gwendal Rivière
, and
Philippe Arbogast

Abstract

Ingredients in the North Pacific flow influencing Rossby wave breakings in the North Atlantic and the intraseasonal variations of the North Atlantic Oscillation (NAO) are investigated using both reanalysis data and a three-level quasigeostrophic model on the sphere. First, a long-term run is shown to reproduce the observed relationship between the nature of the synoptic wave breaking and the phase of the NAO. Furthermore, a large-scale, low-frequency ridge anomaly is identified in the northeastern Pacific in the days prior to the maximum of the positive NAO phase both in the reanalysis and in the model. A large-scale northeastern Pacific trough anomaly is observed during the negative NAO phase but does not systematically precede it.

Then, short-term linear and nonlinear simulations are performed to understand how the large-scale ridge anomaly can act as a precursor of the positive NAO phase. The numerical setup allows for analysis of the propagation of synoptic waves in the eastern Pacific in the presence of a large-scale ridge or trough anomaly and their downstream impact onto the Atlantic jet when they break. The ridge acts in two ways. First, it tends to prevent the downstream propagation of small waves compared to long waves. Second, it deflects the propagation of the wave trains in such a way that they mainly propagate equatorward in the Atlantic. The two modes of action favor the anticyclonic wave breaking and, therefore, the positive NAO phase. With the trough, the wave train propagation is more zonal, disturbances are more meridionally elongated, and cyclonic wave breaking is more frequent in the Atlantic than in the ridge case.

Full access
Marie Drouard
,
Gwendal Rivière
, and
Philippe Arbogast

Abstract

The North Atlantic Oscillation (NAO) response to the northeast Pacific climate variability is examined using the ERA-40 dataset. The main objective is to validate a mechanism involving downstream wave propagation processes proposed in a recent idealized companion study: a low-frequency planetary-scale ridge (trough) anomaly located in the eastern Pacific–North American sector induces more equatorward (poleward) propagation of synoptic-scale wave packets on its downstream side, which favors the occurrence of anticyclonic (cyclonic) wave breakings in the Atlantic sector and the positive (negative) NAO phase.

The mechanism first provides an interpretation of the canonical impact of the El Niño–Southern Oscillation on the NAO in late winter. The wintertime relationship between the Pacific–North American oscillation (PNA) and the NAO is also investigated. For out-of-phase fluctuations between the PNA and NAO indices (i.e., the most recurrent situation in late winter), the eastern Pacific PNA ridge (trough) anomaly modifies the direction of downstream wave propagation, triggering more anticyclonic (cyclonic) wave breakings over the North Atlantic. For in-phase fluctuations, the effect of the eastern Pacific PNA anomalies is cancelled out by the North American PNA anomalies. The latter anomalies being deeper and more centered in the latitudinal band of downstream wave propagation, they are able to reverse the direction of wave propagation just before waves enter the Atlantic domain. The contrasting relationship between the PNA and NAO is similar to what occurs for the two leading hemispheric EOFs of geopotential height: the northern annular mode (NAM) and the cold ocean–warm land (COWL) pattern. The proposed mechanism provides a physical meaning for the NAM and COWL patterns.

Full access