Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Marie-Estelle Demory x
  • Refine by Access: All Content x
Clear All Modify Search
Mohamed S. Siam, Marie-Estelle Demory, and Elfatih A. B. Eltahir

Abstract

The simulations and predictions of the hydrological cycle by general circulation models (GCMs) are characterized by a significant degree of uncertainty. This uncertainty is reflected in the range of Intergovernmental Panel on Climate Change (IPCC) GCM predictions of future changes in the hydrological cycle, particularly over major African basins. The confidence in GCM predictions can be increased by evaluating different GCMs, identifying those models that succeed in simulating the hydrological cycle under current climate conditions, and using them for climate change studies. Reanalyses are often used to validate GCMs, but they also suffer from an inaccurate representation of the hydrological cycle. In this study, the aim is to identify GCMs and reanalyses' products that provide a realistic representation of the hydrological cycle over the Congo and upper Blue Nile (UBN) basins. Atmospheric and soil water balance constraints are employed to evaluate the models' ability to reproduce the observed streamflow, which is the most accurate measurement of the hydrological cycle. Among the ECMWF Interim Re-Analysis (ERA-Interim), NCEP–NCAR reanalysis, and 40-yr ECWMF Re-Analysis (ERA-40), ERA-Interim shows the best performance over these basins: it balances the water budgets and accurately represents the seasonal cycle of the hydrological variables. The authors find that most GCMs used by the IPCC overestimate the hydrological cycle compared to observations. They observe some improvement in the simulated hydrological cycle with increased horizontal resolution, which suggests that some of the high-resolution GCMs are better suited for climate change studies over Africa.

Full access
Jane Strachan, Pier Luigi Vidale, Kevin Hodges, Malcolm Roberts, and Marie-Estelle Demory

Abstract

The ability to run general circulation models (GCMs) at ever-higher horizontal resolutions has meant that tropical cyclone simulations are increasingly credible. A hierarchy of atmosphere-only GCMs, based on the Hadley Centre Global Environmental Model version 1 (HadGEM1) with horizontal resolution increasing from approximately 270 to 60 km at 50°N, is used to systematically investigate the impact of spatial resolution on the simulation of global tropical cyclone activity, independent of model formulation. Tropical cyclones are extracted from ensemble simulations and reanalyses of comparable resolutions using a feature-tracking algorithm. Resolution is critical for simulating storm intensity and convergence to observed storm intensities is not achieved with the model hierarchy. Resolution is less critical for simulating the annual number of tropical cyclones and their geographical distribution, which are well captured at resolutions of 135 km or higher, particularly for Northern Hemisphere basins. Simulating the interannual variability of storm occurrence requires resolutions of 100 km or higher; however, the level of skill is basin dependent. Higher resolution GCMs are increasingly able to capture the interannual variability of the large-scale environmental conditions that contribute to tropical cyclogenesis. Different environmental factors contribute to the interannual variability of tropical cyclones in the different basins: in the North Atlantic basin the vertical wind shear, potential intensity, and low-level absolute vorticity are dominant, whereas in the North Pacific basins midlevel relative humidity and low-level absolute vorticity are dominant. Model resolution is crucial for a realistic simulation of tropical cyclone behavior, and high-resolution GCMs are found to be valuable tools for investigating the global location and frequency of tropical cyclones.

Full access
Liang Guo, Nicholas P. Klingaman, Pier Luigi Vidale, Andrew G. Turner, Marie-Estelle Demory, and Alison Cobb

Abstract

The coastal region of East Asia (EA) is one of the regions with the most frequent impacts from tropical cyclones (TCs). In this study, rainfall and moisture transports related to TCs are measured over EA, and the contribution of TCs to the regional water budget is compared with other contributors, especially the mean circulation of the EA summer monsoon (EASM). Based on ERA-Interim reanalysis (1979–2012), the trajectories of TCs are identified using an objective feature tracking method. Over 60% of TCs occur from July to October (JASO). During JASO, TC rainfall contributes 10%–30% of the monthly total rainfall over the coastal region of EA; this contribution is highest over the south/southeast coast of China in September. TCs make a larger contribution to daily extreme rainfall (above the 95th percentile): 50%–60% over the EA coast and as high as 70% over Taiwan Island. Compared with the mean EASM, TCs transport less moisture over EA. However, as the peak of the mean seasonal cycle of TCs lags two months behind that of the EASM, the moisture transported by TCs is an important source for the water budget over the EA region when the EASM withdraws. This moisture transport is largely performed by westward-moving TCs. These results improve understanding of the water cycle of EA and provide a useful test bed for evaluating and improving seasonal forecasts and coupled climate models.

Full access
Laurent Terray, Marie-Estelle Demory, Michel Déqué, Gaelle de Coetlogon, and Eric Maisonnave

Abstract

Evidence is presented, based on an ensemble of climate change scenarios performed with a global general circulation model of the atmosphere with high horizontal resolution over Europe, to suggest that the end-of-century anthropogenic climate change over the North Atlantic–European region strongly projects onto the positive phase of the North Atlantic Oscillation during wintertime. It is reflected in a doubling of the residence frequency of the climate system in the associated circulation regime, in agreement with the nonlinear climate perspective. The strong increase in the amplitude of the response, compared to coarse-resolution coupled model studies, suggests that improved model representation of regional climate is needed to achieve more reliable projections of anthropogenic climate change on European climate.

Full access
Malcolm J. Roberts, Pier Luigi Vidale, Matthew S. Mizielinski, Marie-Estelle Demory, Reinhard Schiemann, Jane Strachan, Kevin Hodges, Ray Bell, and Joanne Camp

Abstract

The U.K. on Partnership for Advanced Computing in Europe (PRACE) Weather-Resolving Simulations of Climate for Global Environmental Risk (UPSCALE) project, using PRACE resources, constructed and ran an ensemble of atmosphere-only global climate model simulations, using the Met Office Unified Model Global Atmosphere 3 (GA3) configuration. Each simulation is 27 years in length for both the present climate and an end-of-century future climate, at resolutions of N96 (130 km), N216 (60 km), and N512 (25 km), in order to study the impact of model resolution on high-impact climate features such as tropical cyclones. Increased model resolution is found to improve the simulated frequency of explicitly tracked tropical cyclones, and correlations of interannual variability in the North Atlantic and northwestern Pacific lie between 0.6 and 0.75. Improvements in the deficit of genesis in the eastern North Atlantic as resolution increases appear to be related to the representation of African easterly waves and the African easterly jet. However, the intensity of the modeled tropical cyclones as measured by 10-m wind speed remains weak, and there is no indication of convergence over this range of resolutions. In the future climate ensemble, there is a reduction of 50% in the frequency of Southern Hemisphere tropical cyclones, whereas in the Northern Hemisphere there is a reduction in the North Atlantic and a shift in the Pacific with peak intensities becoming more common in the central Pacific. There is also a change in tropical cyclone intensities, with the future climate having fewer weak storms and proportionally more strong storms.

Full access
Benoît Vannière, Malcolm Roberts, Pier Luigi Vidale, Kevin Hodges, Marie-Estelle Demory, Louis-Philippe Caron, Enrico Scoccimarro, Laurent Terray, and Retish Senan

Abstract

Previous studies have shown that the number, intensity, and structure of simulated tropical cyclones (TCs) in climate models get closer to the observations as the horizontal resolution is increased. However, the sensitivity of tropical cyclone precipitation and moisture budget to changes in resolution has received less attention. In this study, we use the five-model ensemble from project PRIMAVERA/HighResMIP to investigate the systematic changes of the water budget of tropical cyclones in a range of horizontal resolutions from 1° to 0.25°. Our results show that, despite a large change in the distribution of TC intensity with resolution, the distribution of precipitation per TC (i.e., averaged in a 5° radial cap) does not change significantly. This result is explained by the fact that low- and high-resolution models represent equally well the large-scale balance that characterizes the moisture budget of TCs, with the radius of the moisture source extending to ~15° from the center of the TC (i.e. well beyond the TC edge). The wind profile is found to converge in the low and high resolutions for radii > 5°, resulting in a moisture flux convergence into the TC of similar magnitude at low and high resolutions. In contrast to precipitation per TC, TC intensity does increase at higher resolution and this is explained by the larger surface latent heat flux near the center of the storm, which leads to an increase in equivalent potential temperature and warmer core anomalies, although this extra latent heat represents a negligible contribution to the overall moisture budget. We discuss the complication arising from the choice of the tracking algorithm when assessing the impact of model resolution.

Open access
Alexander J. Baker, Reinhard Schiemann, Kevin I. Hodges, Marie-Estelle Demory, Matthew S. Mizielinski, Malcolm J. Roberts, Len C. Shaffrey, Jane Strachan, and Pier Luigi Vidale

Abstract

Wintertime midlatitude cyclone activity and precipitation are projected to increase across northern Europe and decrease over southern Europe, particularly over the western Mediterranean. Greater confidence in these regional projections may be established by their replication in state-of-the-art, high-resolution global climate models that resolve synoptic-scale dynamics. We evaluated the representation of the wintertime eddy-driven and subtropical jet streams, extratropical cyclone activity, and precipitation across the North Atlantic and Europe under historical (1985–2011) and RCP8.5 sea surface temperature forcing in an ensemble of atmosphere-only HadGEM3-GA3.0 simulations, where horizontal atmospheric resolution is increased from 135 to 25 km. Under RCP8.5, increased (decreased) frequency of northern (southern) eddy-driven jet occurrences and a basinwide poleward shift in the upper-level westerly flow are simulated. Increasing atmospheric resolution significantly enhances these climate change responses. At 25-km resolution, these enhanced changes in large-scale circulation amplify increases (decreases) in extratropical cyclone track density and mean intensity across the northern (southern) Euro-Atlantic region under RCP8.5. These synoptic changes with resolution impact the overall climate change response of mean and heavy winter precipitation: wetter (drier) conditions in northern (southern) Europe are also amplified at 25-km resolution. For example, the reduction in heavy precipitation simulated over the Iberian Peninsula under RCP8.5 is ~15% at 135 km but ~30% at 25-km resolution. Conversely, a shift to more frequent high extratropical cyclone (ETC)-associated precipitation rates is simulated over Scandinavia under RCP8.5, which is enhanced at 25 km. This study provides evidence that global atmospheric resolution may be a crucial consideration in European winter climate change projections.

Full access
Reinhard Schiemann, Marie-Estelle Demory, Len C. Shaffrey, Jane Strachan, Pier Luigi Vidale, Matthew S. Mizielinski, Malcolm J. Roberts, Mio Matsueda, Michael F. Wehner, and Thomas Jung
Full access
Liang Guo, Ruud J. van der Ent, Nicholas P. Klingaman, Marie-Estelle Demory, Pier Luigi Vidale, Andrew G. Turner, Claudia C. Stephan, and Amulya Chevuturi

ABSTRACT

This study investigates the moisture sources that supply East Asian (EA) precipitation and their interannual variability. Moisture sources are tracked using the Water Accounting Model-2layers (WAM-2layers), based on the Eulerian framework. WAM-2layers is applied to five subregions over EA, driven by the ERA-Interim reanalysis from 1979 to 2015. Due to differences in regional atmospheric circulation and in hydrological and topographic features, the mean moisture sources vary among EA subregions. The tropical oceanic source dominates southeastern EA, while the extratropical continental source dominates other EA subregions. The moisture sources experience large seasonal variations, due to the seasonal cycle of the EA monsoon, the freeze–thaw cycle of the Eurasian continent, and local moisture recycling over the Tibetan Plateau. The interannual variability of moisture sources is linked to interannual modes of the coupled ocean–atmosphere system. The negative phase of the North Atlantic Oscillation increases moisture transport to northwestern EA in winter by driving a southward shift in the midlatitude westerly jet over the Mediterranean Sea, the Black Sea, and the Caspian Sea. Atmospheric moisture lifetime is also reduced due to the enhanced westerlies. In summers following El Niños, an anticyclonic anomaly over the western North Pacific increases moisture supplied from the South China Sea to the southeastern EA and shortens the traveling distance. A stronger Somali Jet in summer increases moisture to the Tibetan Plateau and therefore increases precipitation over the eastern Tibetan Plateau. The methods and findings in this study can be used to evaluate hydrological features in climate simulations.

Open access
Reinhard Schiemann, Marie-Estelle Demory, Len C. Shaffrey, Jane Strachan, Pier Luigi Vidale, Matthew S. Mizielinski, Malcolm J. Roberts, Mio Matsueda, Michael F. Wehner, and Thomas Jung

Abstract

The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season and to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models’ midlatitude circulation.

Open access