Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Mariko Oue x
  • Refine by Access: All Content x
Clear All Modify Search
Matthew R. Kumjian
,
Dana M. Tobin
,
Mariko Oue
, and
Pavlos Kollias

Abstract

Fully polarimetric scanning and vertically pointing Doppler spectral data from the state-of-the-art Stony Brook University Ka-band Scanning Polarimetric Radar (KASPR) are analyzed for a long-duration case of ice pellets over central Long Island in New York from 12 February 2019. Throughout the period of ice pellets, a classic refreezing signature was present, consisting of a secondary enhancement of differential reflectivity Z DR beneath the melting layer within a region of decreasing reflectivity factor at horizontal polarization Z H and reduced copolar correlation coefficient ρ hv. The KASPR radar data allow for evaluation of previously proposed hypotheses to explain the refreezing signature. It is found that, upon entering a layer of locally generated columnar ice crystals and undergoing contact nucleation, smaller raindrops preferentially refreeze into ice pellets prior to the complete freezing of larger drops. Refreezing particles exhibit deformations in shape during freezing, leading to reduced ρ hv, reduced co-to-cross-polar correlation coefficient ρ xh, and enhanced linear depolarization ratio, but these shape changes do not explain the Z DR signature. The presence of columnar ice crystals, though apparently crucial for instigating the refreezing process, does not contribute enough backscattered power to affect the Z DR signature, either.

Free access
Mariko Oue
,
Michele Galletti
,
Johannes Verlinde
,
Alexander Ryzhkov
, and
Yinghui Lu

Abstract

Microphysical processes in shallow Arctic precipitation clouds are illustrated using measurements of differential reflectivity Z DR from the U.S. Department of Energy Atmospheric Radiation Measurement Program polarimetric X-band radar deployed in Barrow, Alaska. X-band hemispheric range height indicator scans used in conjunction with Ka-band radar and lidar measurements revealed prolonged periods dominated by vapor depositional, riming, and/or aggregation growth. In each case, ice precipitation fell through at least one liquid-cloud layer in a seeder–feeder situation before reaching the surface. A long period of sustained low radar reflectivity Z H (<0–5 dBZ) and high Z DR (6–7.5 dB) throughout the depth of the cloud and subcloud layer, coinciding with observations of large pristine dendrites at the surface, suggests vapor depositional growth of large dendrites at low number concentrations. In contrast, Z DR values decreased to 2–3 dB in the mean profile when surface precipitation was dominated by aggregates or rimed dendrites. Small but consistent differences in zenith Ka-band radar Doppler velocity and lidar depolarization measurements were found between aggregation- and riming-dominated periods. The clean Arctic environment can enhance Z DR signals relative to more complex midlatitude cases, producing higher values.

Full access
Dana M. Tobin
,
Matthew R. Kumjian
,
Mariko Oue
, and
Pavlos Kollias

Abstract

The discovery of a polarimetric radar signature indicative of hydrometeor refreezing has shown promise in its utility to identify periods of ice pellet production. Uniquely characterized well below the melting layer by locally enhanced values of differential reflectivity (Z DR) within a layer of decreasing radar reflectivity factor at horizontal polarization (ZH ), the signature has been documented in cases where hydrometeors were completely melted prior to refreezing. However, polarimetric radar features associated with the refreezing of partially melted hydrometeors have not been examined as rigorously in either an observational or microphysical modeling framework. Here, polarimetric radar data—including vertically pointing Doppler spectral data from the Ka-band Scanning Polarimetric Radar (KASPR)—are analyzed for an ice pellets and rain mixture event where the ice pellets formed via the refreezing of partially melted hydrometeors. Observations show that no such distinct localized Z DR enhancement is present, and that values instead decrease directly beneath enhanced values associated with melting. A simplified, explicit bin microphysical model is then developed to simulate the refreezing of partially melted hydrometeors, and coupled to a polarimetric radar forward operator to examine the impacts of such refreezing on simulated radar variables. Simulated vertical profiles of polarimetric radar variables and Doppler spectra have similar features to observations, and confirm that a Z DR enhancement is not produced. This suggests the possibility of two distinct polarimetric features of hydrometeor refreezing: ones associated with refreezing of completely melted hydrometeors, and those associated with refreezing of partially melted hydrometeors.

Significance Statement

There exist two pathways for the formation of ice pellets: refreezing of fully melted hydrometeors, and refreezing of partially melted hydrometeors. A polarimetric radar signature indicative of fully melted hydrometeor refreezing has been extensively documented in the past, yet no study has documented the refreezing of partially melted hydrometeors. Here, observations and idealized modeling simulations are presented to show different polarimetric radar features associated with partially melted hydrometeor refreezing. The distinction in polarimetric features may be beneficial to identifying layers of supercooled liquid drops within transitional winter storms.

Restricted access
Andrea Skow
,
Michael Poellot
,
David Delene
,
Mark Askelson
,
Kirk North
, and
Mariko Oue

Abstract

Parallel stratiform–type mesoscale convective systems (MCS) have been found to comprise less than 20% of the central U.S. MCSs, but parallel stratiform MCSs have been reviewed by few studies and only a handful have been sampled using airborne platforms. This study conducts a detailed review of the 11 May 2011 MCS that was observed during the Midlatitude Continental Convective Clouds Experiment. In situ data from the University of North Dakota Cessna Citation II Weather Research Aircraft and the Oklahoma Mesonet are used in conjunction with radar reflectivity data and a multiple-Doppler wind retrieval to present an in-depth analysis of the kinematic and microphysical processes within this hybrid parallel–trailing stratiform MCS. Results suggest the MCS started with parallel stratiform characteristics and then developed trailing stratiform features over the course of a couple of hours such as leading line convection and the presence of rear inflow, which is a feature not observed in previous studies of parallel stratiform MCSs. Based on surface observations and multi-Doppler wind field retrievals, the cold pool influenced the 11 May 2011 MCS and may have helped it to transition toward the trailing stratiform mode. Within the stratiform region, in situ measurements show hydrometeor aggregation and sublimation occurring above the melting layer via a faster rate of decline in total hydrometer concentration compared to the total water content, the presence of a bimodal droplet size spectra, and increasing dispersion and decreasing slope, with respect to increasing temperature in both the unimodal and bimodal gamma distributions.

Significance Statement

The purpose of this study is to investigate the wind pattern of a nontypical type of thunderstorm complex. The wind pattern is found to be a combination of features from both a common type of thunderstorm complex and another less common type. The behavior of snowflakes as they fall through this thunderstorm was also investigated. The snowflakes in this storm grew bigger by linking up with other snowflakes as they fell down, and then melted before they reached the ground. It is hoped that results from this study are useful to future work to improve weather prediction.

Full access
Mariko Oue
,
Matthew R. Kumjian
,
Yinghui Lu
,
Johannes Verlinde
,
Kultegin Aydin
, and
Eugene E. Clothiaux

Abstract

This study demonstrates that linear depolarization ratio (LDR) values obtained from zenith-pointing Ka-band radar Doppler velocity spectra are sufficient for detecting columnar ice crystals. During a deep precipitating system over the Arctic on 7 December 2013, the radar recorded LDR values up to −15 dB at temperatures corresponding to the columnar ice crystal growth regime. These LDR values were also consistent with scattering calculations for columnar ice crystals. Enhancements in LDR were suppressed within precipitation fallstreaks because the enhanced LDR values of columnar ice crystals were masked by the returns from the particles within the fallstreaks. However, Doppler velocity spectra of LDR within the fallstreak distinguished populations of slower-falling particles with high LDR (>−15 dB) and faster-falling particles with much lower LDR, suggesting that columnar ice crystals with high LDR coexisted with larger isometric particles that produced low LDR while dominating the total copolar reflectivity, thereby decreasing LDR. The measurements suggest that the columnar ice crystals originated in liquid-cloud layers through secondary ice production.

Full access
Jacob T. Carlin
,
Edwin L. Dunnavan
,
Alexander V. Ryzhkov
, and
Mariko Oue

Abstract

Quasi-vertical profiles (QVPs) of polarimetric radar data have emerged as a powerful tool for studying precipitation microphysics. Various studies have found enhancements in specific differential phase K dp in regions of suspected secondary ice production (SIP) due to rime splintering. Similar K dp enhancements have also been found in regions of sublimating snow, another proposed SIP process. This work explores these K dp signatures for two cases of sublimating snow using nearly collocated S- and Ka-band radars. The presence of the signature was inconsistent between the radars, prompting exploration of alternative causes. Idealized simulations are performed using a radar beam-broadening model to explore the impact of nonuniform beam filling (NBF) on the observed reflectivity Z and K dp within the sublimation layer. Rather than an intrinsic increase in ice concentration, the observed K dp enhancements can instead be explained by NBF in the presence of sharp vertical gradients of Z and K dp within the sublimation zone, which results in a K dp bias dipole. The severity of the bias is sensitive to the Z gradient and radar beamwidth and elevation angle, which explains its appearance at only one radar. In addition, differences in scanning strategies and range thresholds during QVP processing can constructively enhance these positive K dp biases by excluding the negative portion of the dipole. These results highlight the need to consider NBF effects in regions not traditionally considered (e.g., in pure snow) due to the increased K dp fidelity afforded by QVPs and the subsequent ramifications this has on the observability of sublimational SIP.

Significance Statement

Many different processes can cause snowflakes to break apart into numerous tiny pieces, including when they evaporate into dry air. Purported evidence of this phenomenon has been seen in data from some weather radars, but we noticed it was not seen in data from others. In this work we use case studies and models to show that this signature may actually be an artifact from the radar beam becoming too big and there being too much variability of the precipitation within it. While this breakup process may actually be occurring in reality, these results suggest we may have trouble observing it with typical weather radars.

Free access
Paloma Borque
,
Stephen W. Nesbitt
,
Robert J. Trapp
,
Sonia Lasher-Trapp
, and
Mariko Oue

Abstract

Convectively generated cold pools are important to the Earth system as they exert strong controls on deep convective-storm initiation, intensity, and life cycle. Despite their importance, efforts to introduce such cold pool controls into weather and climate models lack guidance and/or physical constraints from cold pool observations. This work presents a detailed, purely observational analysis of a cold pool event that took place on 23–24 May 2011 in north-central Oklahoma. The characteristics of the cold pool, and the spatiotemporal evolution of the hydrometeors and dynamics in the proximity of the cold pool, are studied with high-resolution observations. The unprecedented dataset used in this work to study cold pool characteristics includes an enhanced network of surface weather stations, a high-temporal-frequency sounding array, and the NEXRAD and Atmospheric Radiation Measurement (ARM) Southern Great Plains radar networks. The potential use of NEXRAD surveillance scans to estimate height and propagation speed of the leading edge of the cold pool (LECP) is presented in this work. Manual identification and tracking of the LECP from NEXRAD imagery shows a spatial and temporal heterogeneity of the LECP properties. Surprisingly, over its detected life cycle, the LECP speed remains almost constant, even though the strength of the cold pool diminishes in time and its height varies. Radar analysis shows that pulses of graupel and hail within downdrafts in the convective system generating the cold pool appeared to be related to temporary increases in the LECP height.

Free access
Katia Lamer
,
Pavlos Kollias
,
Edward P. Luke
,
Bernat P. Treserras
,
Mariko Oue
, and
Brenda Dolan

Abstract

Multisensor Agile Adaptive Sampling (MAAS), a smart sensing framework, was adapted to increase the likelihood of observing the vertical structure (with little to no gaps), spatial variability (at subkilometer scale), and temporal evolution (at ∼2-min resolution) of convective cells. This adaptation of MAAS guided two mechanically scanning C-band radars (CSAPR2 and CHIVO) by automatically analyzing the latest NEXRAD data to identify, characterize, track, and nowcast the location of all convective cells forming in the Houston domain. MAAS used either a list of predetermined rules or real-time user input to select a convective cell to be tracked and sampled by the C-band radars. The CSAPR2 tracking radar was first tasked to collect three sector plan position indicator (PPI) scans toward the selected cell. Edge computer processing of the PPI scans was used to identify additional targets within the selected cell. In less than 2 min, both the CSAPR2 and CHIVO radars were able to collect bundles of three to six range–height indicator (RHI) scans toward different targets of interest within the selected cell. Bundles were successively collected along the path of cell advection for as long as the cell met a predetermined set of criteria. Between 1 June and 30 September 2022 over 315 000 vertical cross-section observations were collected by the C-band radars through ∼1300 unique isolated convective cells, most of which were observed for over 15 min of their life cycle. To the best of our knowledge, this dataset, collected primarily through automatic means, constitutes the largest dataset of its kind.

Restricted access
Mariko Oue
,
Brian A. Colle
,
Sandra E. Yuter
,
Pavlos Kollias
,
Phillip Yeh
, and
Laura M. Tomkins

Abstract

Limited knowledge exists about ∼100 m scale precipitation processes within U.S. Northeast coastal snowstorms because of a lack of high-resolution observations. We investigate characteristics of microscale updraft regions within the cyclone comma head and their relationships with snowbands, wind shear, frontogenesis, and vertical mass flux using high-spatiotemporal resolution vertically-pointing Ka-band radar measurements, soundings, and reanalysis data for four snowstorms observed at Stony Brook, NY. Updraft regions are defined as contiguous time-height plotted areas with upward Doppler velocity without hydrometeor sedimentation that is equal to or greater than 0.4 m s−1. Most updraft regions in the time-height data occur on a time scale of seconds (< 20 s), which is equivalent to spatial scales < 500 m. These small updraft regions within cloud echo occur more than 30% of the time for three of the four cases and 18% for the other case. They are found at all altitudes and can occur with or without frontogenesis and with or without snowbands. The updraft regions with relatively large Doppler spectrum width (> 0.4 m s−1) occur more frequently within midlevels of the storms, where there are strong wind shear layers and moist shear instability layers. This suggests that the dominant forcing for the updrafts appears to be turbulence associated with the vertical shear instability. The updraft regions can be responsible for upward mass flux when they are closer together in space and time. The higher values of mean upward mass flux within updraft regions often occur during snowband periods.

Restricted access
Heike Kalesse
,
Gijs de Boer
,
Amy Solomon
,
Mariko Oue
,
Maike Ahlgrimm
,
Damao Zhang
,
Matthew D. Shupe
,
Edward Luke
, and
Alain Protat

Abstract

Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. In high latitudes, these cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to be caused by several main factors. Major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). For an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.

Full access