Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Mario Marcello Miglietta x
  • All content x
Clear All Modify Search
Mario Marcello Miglietta and Richard Rotunno
Full access
Mario Marcello Miglietta and Richard Rotunno

Abstract

The possibility offered by the Internet to share pictures of tornadoes, and the storm-report archiving in the European Storm Weather Database, have made it apparent that the occurrence of tornadoes over Europe has been underestimated. Together with weak waterspouts and tornadoes, large and intense vortices are occasionally observed. Among these, an EF3 multivortex tornado with a path width of some hundreds of meters affected southeastern Italy on 28 November 2012, causing one casualty and estimated damage of €60M to the largest steel plant in Europe. A tide gauge positioned near the location of tornado landfall and a vertical atmospheric profile available a few hours later near the affected region represent unique sources of information for these events in the Mediterranean. During its transit across the port of Taranto, a waterspout, which was to become the tornado, was observed to have induced a sea level rise of about 30 cm. The supercell responsible for the tornado developed from convective cells triggered by orographic uplift over the Apennines. The 0–1-km wind shear was exceptional in comparison with other Italian tornadoes, and was remarkable in comparison with U.S. events as well. Other indices for severe convection diagnosis also showed extremely high values. The occasional occurrence of events with similar or stronger intensities over Italy emphasizes the need for the Distributed National Weather Service—which will integrate Italian meteorological institutions under one agency and is currently under development—to devise a warning system dedicated to the monitoring and prediction of severe convective events.

Full access
Mario Marcello Miglietta and Richard Rotunno

Abstract

In a recent study, the authors performed numerical simulations of conditionally unstable flows past a mesoscale mountain ridge in order to investigate the statistically stationary features of the solution precipitation characteristics for intermediate-to-high values of convective available potential energy (CAPE). That study proposed a functional dependence of the rain rate on three parameters, related respectively to the triggering and the orographic forcing of convection and to the ratio of the advective to convective time scales. The present study extends that analysis to cover larger regions of the parameter space, including experiments corresponding to a wider range of CAPE. It is found here that the low-CAPE, moderate-wind experiments do not fit the functional dependence for rain rate amount and location proposed in the authors’ previous study. The analysis of the present solutions suggests that two additional nondimensional parameters should be taken into account.

Full access
Mario Marcello Miglietta and Richard Rotunno

Abstract

Numerical simulations of conditionally unstable flows impinging on a mesoscale mountain ridge have been performed with an explicitly resolving cloud model to investigate the statistically stationary features of the solution precipitation characteristics. The simulations are performed on a three-dimensional domain and at high resolution (grid spacing: 250 m) to properly resolve cellular-scale features. Although the environmental conditions are specified by a simplified idealized conditionally unstable sounding, there are still quite a few external parameters, so only a limited portion of the parameter space was explored. Numerical solutions were first carried out for different uniform-wind profiles impinging on a bell-shaped ridge 2000 m high. In the experiments with weaker environmental wind speeds (2.5 m s−1), the cold-air outflow, caused by the evaporative cooling of rain from precipitating convective cells, is the main mechanism for cell redevelopment and movement; this outflow produces new convective cells near the head of the up- and downstream density currents, which rapidly propagate far from the ridge so that no rainfall is produced close to the ridge at later times. For larger wind speeds (10 and 20 m s−1), there is less time for upwind, evaporation-induced cold-pool formation before air parcels reach the ridge top and descend downwind. For the intermediate wind speed (10 m s−1), evaporation is effective in generating a cold pool only on the downstream side of the ridge, in a region where the air is unsaturated and slow moving. Further experiments with different ridge heights and half-widths were carried out in order to analyze their effect on the distribution and intensity of precipitation. Dimensional analysis reveals that the maximum (nondimensional) rainfall rate mainly depends on the ratio of mountain height to the level of free convection, the ridge aspect ratio, and a parameter that measures the ratio of advective to convective time scales.

Full access
Mario Marcello Miglietta and Richard Rotunno

Abstract

In two recent papers, the authors reported on numerical simulations of conditionally unstable flows past an idealized mesoscale mountain ridge. These idealized simulations, which were performed with a three-dimensional, explicitly cloud-resolving model, allowed the investigation of simulated precipitation characteristics as a function of the prescribed environment. The numerical solutions were carried out for a uniform wind flowing past a bell-shaped ridge and using an idealized unstable sounding with prescribed values of the relevant parameters.

In the present work the application of these theoretical results to observed cases of orographically forced convective rainfall including the Big Thompson flood (1976, Colorado), the Oahu flood (1974, Hawaii), and the Gard flood (2002, France) is reported. Specifically, numerical simulations have been carried out using observed and idealized soundings relevant to these cases but with idealized topography. It is found that using the observed soundings, but with idealized constant-wind profiles, the simulated rain rates fit reasonably well within the previous theoretically derived parameter space for intense orographic convective rainfall. However, in order to reproduce larger rainfall rates, in closer agreement with observations, in the first two cases it was necessary to initialize the sounding with a wind profile characterized by low-level flow toward the mountain with weak flow aloft (as observed for the across-mountain wind component). For the Gard case, the situation was more complex and it is found unlikely that the situation can be reduced to a simple two-dimensional problem.

Full access
Mario Marcello Miglietta and Richard Rotunno

Abstract

In two recent papers, the authors performed numerical simulations with a three-dimensional, explicitly cloud-resolving model for a uniform wind flowing past a bell-shaped ridge and using an idealized unstable (Weisman–Klemp) sounding with prescribed values of the relevant parameters. More recently, some observed cases of orographically forced wind profiles were analyzed, showing that, in order to reproduce larger rainfall rates, it was necessary to initialize the sounding with low-level flow toward the mountain with weak flow aloft (as observed). Additional experiments using the Weisman–Klemp sounding, but with nonuniform wind profiles, are performed here to identify the conditions in which the presence of a low-level cross-mountain flow together with calm flow aloft may increase the rain rates in conditionally unstable flows over the orography. The sensitivity of the solutions to the wind speed at the bottom and the top of a shear layer and the effect of different mountain widths and heights are systematically analyzed herein.

Large rainfall rates are obtained when the cold pool, caused by the evaporative cooling of rain from precipitating convective clouds, remains quasi stationary upstream of the mountain peak. This condition occurs when the cold-pool propagation is approximately countered by the environmental wind. The large precipitation amounts can be attributed to weak upper-level flow, which favors stronger updrafts and upright convective cells, and to the ground-relative stationarity of the cells. This solution feature is produced with ambient wind shear within a narrow region of the parameter space explored here and does not occur in the numerical solutions obtained in the authors’ previous studies with uniform wind profiles.

Full access
Mario Marcello Miglietta, Jordi Mazon, and Richard Rotunno

Abstract

On 28 November 2012, a multivortex EF3 tornado occurred in southeastern Italy causing one fatality and estimated damage of 60 million euros. At approximately 1050 LT (0950 UTC), this tornado, which initially formed in association with a supercell thunderstorm over the Ionian Sea, moved inland. The environment where the tornadic supercell developed was characterized by large vertical wind shear in the lowest 1 km of the atmosphere and moderate conditional instability. Mesoscale-model numerical simulations show that it is possible to produce a simulated supercell thunderstorm with a track, change in intensity, and evolution similar to the actual one that spawned the tornado in Taranto, southern Italy. The genesis of the simulated supercell is due to a combination of mesoscale meteorological features: warm low-level air advected toward the Ionian Sea, combined with midlevel cooling due to an approaching trough, increased the potential instability; the intense vertical shear favored the possibility of supercell development; and boundary layer rolls over the Ionian Sea moved in phase with the cells produced by the orography of Calabria to supply ascent, moisture, and heat to the convection. An unusual feature of the present case is the central role of the orography, which was verified in a sensitivity experiment where it was reduced by 80%.

Full access
Agata Moscatello, Mario Marcello Miglietta, and Richard Rotunno

Abstract

The presence of a subsynoptic-scale vortex over the Mediterranean Sea in southeastern Italy on 26 September 2006 has been recently documented by the authors. The transit of the cyclone over land allowed an accurate diagnosis of the structure of the vortex, based on radar and surface station data, showing that the cyclone had features similar to those observed in tropical cyclones. To investigate the cyclone in greater depth, numerical simulations have been performed using the Weather Research and Forecasting (WRF) model, set up with two domains, in a two-way-nested configuration. Model simulations are able to properly capture the timing and intensity of the small-scale cyclone. Moreover, the present simulated cyclone agrees with the observational analysis of this case, identifying in this small-scale depression the typical characteristics of a Mediterranean tropical-like cyclone. An analysis of the mechanisms responsible for the genesis, development, and maintenance of the cyclone has also been performed. Sensitivity experiments show that cyclogenesis on the lee side of the Atlas Mountains is responsible for the generation of the cyclone. Surface sensible and latent heat fluxes become important during the subsequent phase of development in which the lee-vortex shallow depression evolved as it moved toward the south of Sicily. During this phase, the latent heating, associated with convective motions triggered by a cold front entering the central Mediterranean area, was important for the intensification and contraction of the horizontal scale of the vortex. The small-scale cyclone subsequently deepened as it moved over the Ionian Sea and then maintained its intensity during its later transit over the Adriatic Sea; in this later stage, latent heat release continued to play a major role in amplifying and maintaining the vortex, while the importance of the surface fluxes diminished.

Full access
Mario Marcello Miglietta, Thomas Huld, and Fabio Monforti-Ferrario

Abstract

To assess the possibility of a combined use of solar and wind energy over Europe, a continental-scale dataset, with high spatial and temporal resolution and covering three years of data (2012–14), is analyzed. The 100-m wind is taken from the ECMWF analyses/short-range forecasts. To obtain hourly values of potentially generated electricity, wind is transformed into normalized electricity-generation data by considering a normalized output function representing the most common wind turbines available in the European market. A strong monthly variation is present, showing the maximum potential at high latitudes in winter and shifting to specific areas in the Mediterranean Sea region in summer. Hourly data for solar radiation are extracted from the satellite-retrieval scheme of the Satellite Application Facility on Climate Monitoring (CM SAF). The energy output of photovoltaic systems is calculated by considering the amount of solar radiation that arrives at the surface of the photovoltaic modules. Together with the main functional dependence on latitude, the photovoltaic potential depends also on longitude, as a consequence of the average pressure patterns. Last, the local correlation of wind and solar resources is assessed. For hourly data, a weak anticorrelation prevails in the domain, suggesting a degree of local complementarity of the two sources in many regions. A strong effect from the diurnal cycle is observed in some regions. Also, a significant dependence on the month (higher absolute values in summer) and on the time scale (increase in absolute value with the extension of the time window that is considered for the correlation) is apparent.

Full access
Sante Laviola, Agata Moscatello, Mario Marcello Miglietta, Elsa Cattani, and Vincenzo Levizzani

Abstract

Two heavy rain events over the Central Mediterranean basin, which are markedly different by genesis, dimensions, duration, and intensity, are analyzed. Given the relative low frequency of this type of severe storms in the area, a synoptic analysis describing their development is included. A multispectral analysis based on geostationary multifrequency satellite images is applied to identify cloud type, hydrometeor phase, and cloud vertical extension. Precipitation intensity is retrieved from (i) surface rain gauges, (ii) satellite data, and (iii) numerical model simulations. The satellite precipitation retrieval algorithm 183-Water vapor Strong Lines (183-WSL) is used to retrieve rain rates and cloud hydrometeor type, classify stratiform and convective rainfall, and identify liquid water clouds and snow cover from the Advanced Microwave Sounding Unit-B (AMSU-B) sensor data. Rainfall intensity is also simulated with the Weather Research and Forecasting (WRF) numerical model over two nested domains with horizontal resolutions of 16 km (comparable to that of the satellite sensor AMSU-B) and 4 km. The statistical analysis of the comparison between satellite retrievals and model simulations demonstrates the skills of both methods for the identification of the main characteristics of the cloud systems with a suggested overall bias of the model toward very low rain intensities. WRF (in the version used for the experiment) seems to classify as low rain intensity regions those areas where the 183-WSL retrieves no precipitation while sensing a mixture of freshly nucleated cloud droplets and a large amount of water vapor; in these areas, especially adjacent to the rain clouds, large amounts of cloud liquid water are detected. The satellite method performs reasonably well in reproducing the wide range of gauge-detected precipitation intensities. A comparison of the 183-WSL retrievals with gauge measurements demonstrates the skills of the algorithm in discriminating between convective and stratiform precipitation using the scattering and absorption of radiation by the hydrometeors.

Full access