Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Mark Beaubien x
  • Refine by Access: All Content x
Clear All Modify Search
Peter Black, Lee Harrison, Mark Beaubien, Robert Bluth, Roy Woods, Andrew Penny, Robert W. Smith, and James D. Doyle


The High-Definition Sounding System (HDSS) is an automated system deploying the expendable digital dropsonde (XDD) designed to measure wind and pressure–temperature–humidity (PTH) profiles, and skin sea surface temperature (SST) within and around tropical cyclones (TCs) and other high-impact weather events needing high sampling density. Three experiments were conducted to validate the XDD.

On two successive days off the California coast, 10 XDDs and 14 Vaisala RD-94s were deployed from the navy’s Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft over offshore buoys. The Twin Otter made spiral descents from 4 km to 60 m at the same descent rate as the sondes. Differences between successive XDD and RD-94 profiles due to true meteorological variability were on the same order as the profile differences between the spirals, XDDs, and RD-94s. XDD SST measured via infrared microradiometer, referred to as infrared skin SST (SSTir), and surface wind measurements were within 0.5°C and 1.5 m s−1, respectively, of buoy and Twin Otter values.

A NASA DC-8 flight launched six XDDs from 12 km between ex-TC Cosme and the Baja California coast. Repeatability was shown with good agreement between features in successive profiles. XDD SSTir measurements from 18° to 28°C and surface winds agreed well with drifting buoy- and satellite-derived estimates.

Excellent agreement was found between PTH and wind profiles measured by XDDs deployed from a NASA WB-57 at 18-km altitude offshore from the Texas coast and NWS radiosonde profiles from Brownsville and Corpus Christi, Texas. Successful XDD profiles were obtained in the clear and within precipitation over an offshore squall line.

Full access
James D. Doyle, Jonathan R. Moskaitis, Joel W. Feldmeier, Ronald J. Ferek, Mark Beaubien, Michael M. Bell, Daniel L. Cecil, Robert L. Creasey, Patrick Duran, Russell L. Elsberry, William A. Komaromi, John Molinari, David R. Ryglicki, Daniel P. Stern, Christopher S. Velden, Xuguang Wang, Todd Allen, Bradford S. Barrett, Peter G. Black, Jason P. Dunion, Kerry A. Emanuel, Patrick A. Harr, Lee Harrison, Eric A. Hendricks, Derrick Herndon, William Q. Jeffries, Sharanya J. Majumdar, James A. Moore, Zhaoxia Pu, Robert F. Rogers, Elizabeth R. Sanabia, Gregory J. Tripoli, and Da-Lin Zhang


Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.

Open access