Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Marlene Baumgart x
  • All content x
Clear All Modify Search
Michael Riemer, Marlene Baumgart, and Sven Eiermann

Abstract

During extratropical transition (ET), tropical cyclones exert a significant impact on the midlatitude circulation. Archetypical features of this impact are jet streak formation, amplification of the downstream trough, and modification of the associated downstream cyclogenesis. This study investigates the relative importance of the jet streak and the upper-level trough for cyclone development by quantifying the respective contributions to midtropospheric vertical motion using the Q-vector partitioning by J. C. Jusem and R. Atlas. Their framework is here extended from quasigeostrophic theory to alternative balance. The Q vector under alternative balance involves the nondivergent wind, instead of the geostrophic wind, and therefore represents more accurately the balanced dynamics associated with vertical motion, in particular downstream of ET where the flow often exhibits significant curvature associated with the amplified trough.

An idealized ET scenario and three real cases, the cyclones downstream of Hanna (2008), Choi-wan (2008), and Jangmi (2009), are analyzed. In all cases, the trough plays a prominent role in cyclone development. The jet streak plays a prominent, favorable role in the idealized ET scenario and downstream of Hanna. In contrast, the role of the jet streak downstream of Choi-wan is clearly of secondary importance. Interestingly, downstream of Jangmi the jet streak has a prominent but detrimental impact. It is concluded that amplified jet streaks associated with ET have the potential to be of significant importance for downstream cyclone development. The few cases considered in this study, however, point to a large case-to-case variability of the role of the jet streak.

Full access
Marlene Baumgart, Michael Riemer, Volkmar Wirth, Franziska Teubler, and Simon T. K. Lang

Abstract

Synoptic-scale error growth near the tropopause is investigated from a process-based perspective. Following previous work, a potential vorticity (PV) error tendency equation is derived and partitioned into individual contributions to yield insight into the processes governing error growth near the tropopause. Importantly, we focus here on the further amplification of preexisting errors and not on the origin of errors. The individual contributions to error growth are quantified in a case study of a 6-day forecast. In this case, localized mesoscale error maxima have formed by forecast day 2. These maxima organize into a wavelike pattern and reach the Rossby wave scale around forecast day 6. Error growth occurs most prominently within the Atlantic and Pacific Rossby wave patterns. In our PV framework, the error growth is dominated by the contribution of upper-level, near-tropopause PV anomalies (near-tropopause dynamics). Significant contributions from upper-tropospheric divergent flow (prominently associated with latent heat release below) and lower-tropospheric anomalies [tropospheric-deep (i.e., baroclinic) interaction] are associated with a misrepresentation of the surface cyclone development in the forecast. These contributions are, in general, of smaller importance to error growth than near-tropopause dynamics. This result indicates that the mesoscale errors generated near the tropopause do not primarily project on differences in the subsequent baroclinic growth, but instead directly project on the tropopause evolution and amplify because of differences in the nonlinear Rossby wave dynamics.

Open access
Marlene Baumgart, Paolo Ghinassi, Volkmar Wirth, Tobias Selz, George C. Craig, and Michael Riemer

Abstract

Two diagnostics based on potential vorticity and the envelope of Rossby waves are used to investigate upscale error growth from a dynamical perspective. The diagnostics are applied to several cases of global, real-case ensemble simulations, in which the only difference between the ensemble members lies in the random seed of the stochastic convection scheme. Based on a tendency equation for the enstrophy error, the relative importance of individual processes to enstrophy-error growth near the tropopause is quantified. After the enstrophy error is saturated on the synoptic scale, the envelope diagnostic is used to investigate error growth up to the planetary scale. The diagnostics reveal distinct stages of the error growth: in the first 12 h, error growth is dominated by differences in the convection scheme. Differences in the upper-tropospheric divergent wind then project these diabatic errors into the tropopause region (day 0.5–2). The subsequent error growth (day 2–14.5) is governed by differences in the nonlinear near-tropopause dynamics. A fourth stage of the error growth is found up to 18 days when the envelope diagnostic indicates error growth from the synoptic up to the planetary scale. Previous ideas of the multiscale nature of upscale error growth are confirmed in general. However, a novel interpretation of the governing processes is provided. The insight obtained into the dynamics of upscale error growth may help to design representations of uncertainty in operational forecast models and to identify atmospheric conditions that are intrinsically prone to large error amplification.

Open access
Paolo Ghinassi, Marlene Baumgart, Franziska Teubler, Michael Riemer, and Volkmar Wirth

Abstract

Recently, the authors proposed a novel diagnostic to quantify the amplitude of Rossby wave packets. This diagnostic extends the local finite-amplitude wave activity (LWA) of N. Nakamura and collaborators to the primitive-equations framework and combines it with a zonal filter to remove the phase dependence. In the present work, this diagnostic is used to investigate the dynamics of upper-tropospheric Rossby wave packets, with a particular focus on distinguishing between conservative dynamics and nonconservative processes. For this purpose, a budget equation for filtered LWA is derived and its utility is tested in a hierarchy of models. Idealized simulations with a barotropic and a dry primitive-equation model confirm the ability of the LWA diagnostic to identify nonconservative local sources or sinks of wave activity. In addition, the LWA budget is applied to forecast data for an episode in which the amplitude of an upper-tropospheric Rossby wave packet was poorly represented. The analysis attributes deficiencies in the Rossby wave packet amplitude to the misrepresentation of diabatic processes and illuminates the importance of the upper-level divergent outflow as a source for the error in the wave packet amplitude.

Open access