Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Martin Claussen x
- Refine by Access: All Content x
Abstract
The existence and productivity of vegetation is the basis for food and energy supply in the Sahel. Past changes in climate and vegetation abundance have raised the question whether the region could become greener in the future as a result of higher CO2 levels. By analyzing three Earth system models (ESMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with dynamic vegetation, the authors demonstrate why an answer to this question remains elusive in contrast to more robust projections of vegetation cover in the extratropics. First, it depends on the location and the time scale whether vegetation expands or retreats. Until the end of the twenty-first century, the three models agree on a substantial greening in the central and eastern Sahel due to increased CO2 levels. This trend is reversed thereafter, and vegetation retreats in particular in the western Sahel because the beneficial effect of CO2 fertilization is short lived compared to climate change. Second, the vegetation cover changes are driven by different processes in different models (most importantly, precipitation change and CO2 fertilization). As these processes tend to oppose each other, the greening and browning trends are not a reliable result despite the apparent model agreement. The authors also find that the effect of vegetation dynamics on the surface energy balance crucially depends on the location. In contrast to the results of many previous studies, the Sahel appears as a hotspot where the physiological effects of CO2 can exert a cooling because vegetation structure and distribution overcompensate for the decreased stomatal conductance.
Abstract
The existence and productivity of vegetation is the basis for food and energy supply in the Sahel. Past changes in climate and vegetation abundance have raised the question whether the region could become greener in the future as a result of higher CO2 levels. By analyzing three Earth system models (ESMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with dynamic vegetation, the authors demonstrate why an answer to this question remains elusive in contrast to more robust projections of vegetation cover in the extratropics. First, it depends on the location and the time scale whether vegetation expands or retreats. Until the end of the twenty-first century, the three models agree on a substantial greening in the central and eastern Sahel due to increased CO2 levels. This trend is reversed thereafter, and vegetation retreats in particular in the western Sahel because the beneficial effect of CO2 fertilization is short lived compared to climate change. Second, the vegetation cover changes are driven by different processes in different models (most importantly, precipitation change and CO2 fertilization). As these processes tend to oppose each other, the greening and browning trends are not a reliable result despite the apparent model agreement. The authors also find that the effect of vegetation dynamics on the surface energy balance crucially depends on the location. In contrast to the results of many previous studies, the Sahel appears as a hotspot where the physiological effects of CO2 can exert a cooling because vegetation structure and distribution overcompensate for the decreased stomatal conductance.
Abstract
The tropical easterly jet (TEJ) is a characteristic upper-level feature of the West African monsoon (WAM) circulation. Moreover, the TEJ over West Africa is significantly correlated with summer Sahel rainfall on interannual and decadal time scales. In contrast, the relationship between Sahel rainfall and the regional TEJ on synoptic to intraseasonal time scales is unclear. Therefore, this relationship is investigated by means of multiple statistical analyses using temporally highly resolved measurement and reanalysis data. It is shown that average correlations between convective activity and regional TEJ intensity remain below 0.3 for all synoptic to intraseasonal time scales. Especially on the synoptic time scale, the TEJ significantly lags anomalies in convective activity by one or two days, which indicates that convection anomalies are more likely to drive changes in the regional TEJ than vice versa. To further shed light on the role of the TEJ for rainfall over West Africa, a previously proposed effect of TEJ-induced upper-level divergence on the development of mesoscale convective systems (MCSs) is examined more closely. An analysis of nearly 300 Sahelian MCSs shows that their initiation is generally not associated with significant TEJ anomalies or jet-induced upper-level divergence. Furthermore, no statistically significant evidence is found that preexisting TEJ-related upper-level divergence anomalies affect intensity, size, and lifetime of MCSs. A limiting factor of this study is the focus on TEJ-induced upper-level divergence. Therefore, a possible effect of the TEJ on Sahel rainfall via other mechanisms cannot be ruled out and should be subject to future studies.
Abstract
The tropical easterly jet (TEJ) is a characteristic upper-level feature of the West African monsoon (WAM) circulation. Moreover, the TEJ over West Africa is significantly correlated with summer Sahel rainfall on interannual and decadal time scales. In contrast, the relationship between Sahel rainfall and the regional TEJ on synoptic to intraseasonal time scales is unclear. Therefore, this relationship is investigated by means of multiple statistical analyses using temporally highly resolved measurement and reanalysis data. It is shown that average correlations between convective activity and regional TEJ intensity remain below 0.3 for all synoptic to intraseasonal time scales. Especially on the synoptic time scale, the TEJ significantly lags anomalies in convective activity by one or two days, which indicates that convection anomalies are more likely to drive changes in the regional TEJ than vice versa. To further shed light on the role of the TEJ for rainfall over West Africa, a previously proposed effect of TEJ-induced upper-level divergence on the development of mesoscale convective systems (MCSs) is examined more closely. An analysis of nearly 300 Sahelian MCSs shows that their initiation is generally not associated with significant TEJ anomalies or jet-induced upper-level divergence. Furthermore, no statistically significant evidence is found that preexisting TEJ-related upper-level divergence anomalies affect intensity, size, and lifetime of MCSs. A limiting factor of this study is the focus on TEJ-induced upper-level divergence. Therefore, a possible effect of the TEJ on Sahel rainfall via other mechanisms cannot be ruled out and should be subject to future studies.