Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Martin J. Leach x
  • Refine by Access: All Content x
Clear All Modify Search
Martin J. Leach and A. A. N. Patrinos

Abstract

The existence of coastal fronts and their effects on deposition patterns in the Washington, D.C. area are presented in this paper. The data are from an experiment conducted from October 1986 to March 1987. An earlier paper by Patrinos et al. presented the details of the deposition patterns. The results presented in that paper were not entirely consistent with the experiment's hypothesis; that is, synoptic-scale southeasterly surface flow would produce excess deposition northwest of the city. Instead, excess deposition was found to the southeast of the urban area. This paper examines the meteorology more closely and shows how small-scale meteorological circulations influence the flow fields and deposition patterns. The wind fields in the experiment area were more northerly to northeasterly in response to coastal circulations, rather than southeasterly as expected from the synoptic conditions. The meteorology and deposition patterns from four cases are presented, with evidence of coastal circulations apparent in three of the four cases.

Full access
Xiaodong Hong, Martin J. Leach, and Sethu Raman

Abstract

Variable vegetation cover is a possible trigger for convection, especially in semiarid areas due to differential surface forcing. A two-dimensional numerical model with explicit cloud physics and a detailed vegetation parameterization scheme is used to investigate the role of vegetation differences in triggering convective cloud formation. The ground surface in all simulations includes two irrigated vegetation areas with a dry steppe in the center of the domain. The effects of atmospheric stability, ambient moisture profile, and horizontal heating scale are investigated.

Atmospheric stability controls the growth of convective circulations. Thermal circulations form at the interfaces between the vegetated areas and the dry steppe. In the more stable environment, two distinct convective cells persist; they merge into one cell in the less stable cases. The existence of low-level moisture controls the timing and persistence of clouds that form. An interesting result is the earlier dissipation of clouds in less stable cases, as greater mixing with drier air from aloft leads to the dilution of the cloud water. Since the largest thermal forcing exists at the interfaces, length of the steppe interacts with the stability to control the merger of the cells. The two cells merge quickly into one for narrow horizontal heating. For the widest heating scale studied, no merger occurs.

Full access
Stevens T. Chan and Martin J. Leach

Abstract

Under the sponsorship of the U.S. Department of Energy and U.S. Department of Homeland Security, a computational fluid dynamics (CFD) model for simulating airflow and dispersion of chemical/biological agents released in urban areas has recently been developed. This model, the Finite Element Model in 3-Dimensions and Massively Parallelized (FEM3MP), is based on solving the three-dimensional, time-dependent Navier–Stokes equations with appropriate physics submodels on massively parallel computer platforms. It employs finite-element discretization for effective treatment of complex geometries and a semi-implicit projection scheme for efficient time integration. A simplified CFD approach, using both explicitly resolved and virtual buildings, was implemented to improve further the model’s efficiency. Results from our model are continuously being verified against measured data from wind-tunnel and field studies. Herein, this model is further evaluated using observed data from intensive operation periods (IOP) 3 and 9 of the Joint Urban 2003 field study conducted in Oklahoma City, Oklahoma, in July 2003. The model simulations of wind and concentration fields in the near and intermediate regions, as well as profiles of wind speed, wind direction, friction velocity, and turbulent kinetic energy (TKE) in the urban wake region, are generally consistent with and compared reasonably well to field observations. In addition, this model was able to reproduce the observed split plume of IOP 3 and the end vortices along Park Avenue in IOP 9. The dispersion results and TKE profiles at the crane station indicate that the effects of convective mixing are relatively important for the daytime release of IOP 3 but that the stable effects are relatively unimportant for the nighttime release of IOP 9. Results of this study also suggest that the simplified CFD approach implemented in FEM3MP can be a cost-effective tool for simulating urban dispersion problems.

Full access
Frank J. Gouveia, Martin J. Leach, Joseph H. Shinn, and William E. Ralph

Abstract

Although measured vertical profiles of wind, turbulence, and tracer concentrations are critical for understanding the urban boundary layer, it is problematic to field a sounding system or a tall structure to support anemometers in a densely populated area. Anemometers mounted on an existing building may be measuring flow distorted by that building. During the Joint Urban 2003 field experiment in Oklahoma City, the authors solved these problems by using a large crane to support a cable and crossarm framework holding a vertical array of eight 3D sonic anemometers. The highest level was over 80 m above the surface; the lowest was just under 8 m. The open-lattice structure of the crane boom and skeletal array framework did not substantially alter the airflow to the sensors. Review of the spectra shows that there are no consistent oscillations in the wind data. Data were accepted from all azimuths, although the flow was from the south 80% of the time. Profiles of wind show pronounced curvature, indicating that the higher levels may be affected by rougher surfaces at a great distance from the crane. This crane-lofted system was safely erected and disassembled in a few hours, stood undisturbed for 34 days, and collected over 1500 separate profiles of 30-min averages.

Full access
Hung-Neng S. Chin, Martin J. Leach, Gayle A. Sugiyama, John M. Leone Jr., Hoyt Walker, J. S. Nasstrom, and Michael J. Brown

Abstract

A modified urban canopy parameterization (UCP) is developed and evaluated in a three-dimensional mesoscale model to assess the urban impact on surface and lower-atmospheric properties. This parameterization accounts for the effects of building drag, turbulent production, radiation balance, anthropogenic heating, and building rooftop heating/cooling. U.S. Geological Survey (USGS) land-use data are also utilized to derive urban infrastructure and urban surface properties needed for driving the UCP. An intensive observational period with clear sky, strong ambient wind, and drainage flow, and the absence of a land–lake breeze over the Salt Lake Valley, occurring on 25–26 October 2000, is selected for this study.

A series of sensitivity experiments are performed to gain understanding of the urban impact in the mesoscale model. Results indicate that within the selected urban environment, urban surface characteristics and anthropogenic heating play little role in the formation of the modeled nocturnal urban boundary layer. The rooftop effect appears to be the main contributor to this urban boundary layer. Sensitivity experiments also show that for this weak urban heat island case, the model horizontal grid resolution is important in simulating the elevated inversion layer.

The root-mean-square errors of the predicted wind and temperature with respect to surface station measurements exhibit substantially larger discrepancies at the urban locations than their rural counterparts. However, the close agreement of modeled tracer concentration with observations fairly justifies the modeled urban impact on the wind-direction shift and wind-drag effects.

Full access
J. C. Doran, S. Abbott, J. Archuleta, X. Bian, J. Chow, R. L. Coulter, S. F. J. de Wekker, S. Edgerton, S. Elliott, A. Fernandez, J. D. Fast, J. M. Hubbe, C. King, D. Langley, J. Leach, J. T. Lee, T. J. Martin, D. Martinez, J. L. Martinez, G. Mercado, V. Mora, M. Mulhearn, J. L. Pena, R. Petty, W. Porch, C. Russell, R. Salas, J. D. Shannon, W. J. Shaw, G. Sosa, L. Tellier, B. Templeman, J. G. Watson, R. White, C. D. Whiteman, and D. Wolfe

A boundary layer field experiment in the Mexico City basin during the period 24 February–22 March 1997 is described. A total of six sites were instrumented. At four of the sites, 915-MHz radar wind profilers were deployed and radiosondes were released five times per day. Two of these sites also had sodars collocated with the profilers. Radiosondes were released twice per day at a fifth site to the south of the basin, and rawinsondes were flown from another location to the northeast of the city three times per day. Mixed layers grew to depths of 2500–3500 m, with a rapid period of growth beginning shortly before noon and lasting for several hours. Significant differences between the mixed-layer temperatures in the basin and outside the basin were observed. Three thermally and topographically driven flow patterns were observed that are consistent with previously hypothesized topographical and thermal forcing mechanisms. Despite these features, the circulation patterns in the basin important for the transport and diffusion of air pollutants show less day-to-day regularity than had been anticipated on the basis of Mexico City's tropical location, high altitude and strong insolation, and topographical setting.

Full access