Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Martin Wirth x
- Refine by Access: All Content x
Abstract
The quasi-horizontal roll-up of unstable stratospheric intrusions into isolated vortices is known to result in specific structures on satellite water vapor images that are characterized by intermingling dark and light filaments. The current paper investigates how these features are generated and how they relate to partly similar features found on concurrent maps of the tropopause height or potential vorticity (PV). The roll-up of a stratospheric intrusion is simulated numerically with an idealized quasigeostrophic model, which focuses on the dynamics induced by anomalies in the height of the tropopause. The upper-tropospheric adiabatic vertical wind is calculated explicitly and is used to simulate water vapor images in the model. These images show qualitatively the same characteristic features as observed. They are generated through a combination of horizontal advection of initial moisture anomalies and the creation of additional moisture anomalies resulting from the upper-tropospheric vertical air motion. The latter is, in turn, induced by the quasi-horizontal motion of the tropopause anomaly. It is suggested that a substantial portion of the spiral-like structures on the water vapor images is likely to reflect the vertical wind induced by the evolution of the intrusion itself. When the tropopause is defined through a fairly low value of PV, it may acquire similar spiraling structures, as it is being advected almost like a passive tracer. On the other hand, for the dynamically active core part of the intrusion, which is located at higher values of PV, one may expect an evolution leading to more compact vortex cores and less structure overall.
Abstract
The quasi-horizontal roll-up of unstable stratospheric intrusions into isolated vortices is known to result in specific structures on satellite water vapor images that are characterized by intermingling dark and light filaments. The current paper investigates how these features are generated and how they relate to partly similar features found on concurrent maps of the tropopause height or potential vorticity (PV). The roll-up of a stratospheric intrusion is simulated numerically with an idealized quasigeostrophic model, which focuses on the dynamics induced by anomalies in the height of the tropopause. The upper-tropospheric adiabatic vertical wind is calculated explicitly and is used to simulate water vapor images in the model. These images show qualitatively the same characteristic features as observed. They are generated through a combination of horizontal advection of initial moisture anomalies and the creation of additional moisture anomalies resulting from the upper-tropospheric vertical air motion. The latter is, in turn, induced by the quasi-horizontal motion of the tropopause anomaly. It is suggested that a substantial portion of the spiral-like structures on the water vapor images is likely to reflect the vertical wind induced by the evolution of the intrusion itself. When the tropopause is defined through a fairly low value of PV, it may acquire similar spiraling structures, as it is being advected almost like a passive tracer. On the other hand, for the dynamically active core part of the intrusion, which is located at higher values of PV, one may expect an evolution leading to more compact vortex cores and less structure overall.
Abstract
The first collocated measurements during THORPEX (The Observing System Research and Predictability Experiment) regional campaign in Europe in 2007 were performed by a novel four-wavelength differential absorption lidar and a scanning 2-μm Doppler wind lidar on board the research aircraft Falcon of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). One mission that was characterized by exceptionally high data coverage (47% for the specific humidity q and 63% for the horizontal wind speed υh ) was selected to calculate the advective transport of atmospheric moisture qυh along a 1600-km section in the warm sector of an extratropical cyclone. The observations are compared with special 1-hourly model data calculated by the ECMWF integrated forecast system. Along the cross section, the model underestimates the wind speed on average by −2.8% (−0.6 m s−1) and overestimates the moisture at dry layers and in the boundary layer, which results in a wet bias of 17.1% (0.2 g kg−1). Nevertheless, the ECMWF model reproduces quantitatively the horizontally averaged moisture transport in the warm sector. There, the superposition of high low-level humidity and the increasing wind velocities with height resulted in a deep tropospheric layer of enhanced water vapor transport qυh . The observed moisture transport is variable and possesses a maximum of qυh = 130 g kg−1 m s−1 in the lower troposphere. The pathways of the moisture transport from southwest via several branches of different geographical origin are identified by Lagrangian trajectories and by high values of the vertically averaged tropospheric moisture transport.
Abstract
The first collocated measurements during THORPEX (The Observing System Research and Predictability Experiment) regional campaign in Europe in 2007 were performed by a novel four-wavelength differential absorption lidar and a scanning 2-μm Doppler wind lidar on board the research aircraft Falcon of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). One mission that was characterized by exceptionally high data coverage (47% for the specific humidity q and 63% for the horizontal wind speed υh ) was selected to calculate the advective transport of atmospheric moisture qυh along a 1600-km section in the warm sector of an extratropical cyclone. The observations are compared with special 1-hourly model data calculated by the ECMWF integrated forecast system. Along the cross section, the model underestimates the wind speed on average by −2.8% (−0.6 m s−1) and overestimates the moisture at dry layers and in the boundary layer, which results in a wet bias of 17.1% (0.2 g kg−1). Nevertheless, the ECMWF model reproduces quantitatively the horizontally averaged moisture transport in the warm sector. There, the superposition of high low-level humidity and the increasing wind velocities with height resulted in a deep tropospheric layer of enhanced water vapor transport qυh . The observed moisture transport is variable and possesses a maximum of qυh = 130 g kg−1 m s−1 in the lower troposphere. The pathways of the moisture transport from southwest via several branches of different geographical origin are identified by Lagrangian trajectories and by high values of the vertically averaged tropospheric moisture transport.
Abstract
In 2011, the German Federal Ministry of Transport, Building and Urban Development laid the foundation of the Hans-Ertel Centre for Weather Research [Hans-Ertel-Zentrum für Wetterforschung (HErZ)] in order to better connect fundamental meteorological research and teaching at German universities and atmospheric research centers with the needs of the German national weather service Deutscher Wetterdienst (DWD). The concept for HErZ was developed by DWD and its scientific advisory board with input from the entire German meteorological community. It foresees core research funding of about €2,000,000 yr−1 over a 12-yr period, during which time permanent research groups must be established and DWD subjects strengthened in the university curriculum. Five priority research areas were identified: atmospheric dynamics and predictability, data assimilation, model development, climate monitoring and diagnostics, and the optimal use of information from weather forecasting and climate monitoring for the benefit of society. Following an open call, five groups were selected for funding for the first 4-yr phase by an international review panel. A dual project leadership with one leader employed by the academic institute and the other by DWD ensures that research and teaching in HErZ is attuned to DWD needs and priorities, fosters a close collaboration with DWD, and facilitates the transfer of fundamental research into operations. In this article, we describe the rationale behind HErZ and the road to its establishment, present some scientific highlights from the initial five research groups, and discuss the merits and future development of this new concept to better link academic research with the needs and challenges of a national weather service.
Abstract
In 2011, the German Federal Ministry of Transport, Building and Urban Development laid the foundation of the Hans-Ertel Centre for Weather Research [Hans-Ertel-Zentrum für Wetterforschung (HErZ)] in order to better connect fundamental meteorological research and teaching at German universities and atmospheric research centers with the needs of the German national weather service Deutscher Wetterdienst (DWD). The concept for HErZ was developed by DWD and its scientific advisory board with input from the entire German meteorological community. It foresees core research funding of about €2,000,000 yr−1 over a 12-yr period, during which time permanent research groups must be established and DWD subjects strengthened in the university curriculum. Five priority research areas were identified: atmospheric dynamics and predictability, data assimilation, model development, climate monitoring and diagnostics, and the optimal use of information from weather forecasting and climate monitoring for the benefit of society. Following an open call, five groups were selected for funding for the first 4-yr phase by an international review panel. A dual project leadership with one leader employed by the academic institute and the other by DWD ensures that research and teaching in HErZ is attuned to DWD needs and priorities, fosters a close collaboration with DWD, and facilitates the transfer of fundamental research into operations. In this article, we describe the rationale behind HErZ and the road to its establishment, present some scientific highlights from the initial five research groups, and discuss the merits and future development of this new concept to better link academic research with the needs and challenges of a national weather service.
Abstract
A configuration of the High-Altitude Long-Range Research Aircraft (HALO) as a remote sensing cloud observatory is described, and its use is illustrated with results from the first and second Next-Generation Aircraft Remote Sensing for Validation (NARVAL) field studies. Measurements from the second NARVAL (NARVAL2) are used to highlight the ability of HALO, when configured in this fashion, to characterize not only the distribution of water condensate in the atmosphere, but also its impact on radiant energy transfer and the covarying large-scale meteorological conditions—including the large-scale velocity field and its vertical component. The NARVAL campaigns with HALO demonstrate the potential of airborne cloud observatories to address long-standing riddles in studies of the coupling between clouds and circulation and are helping to motivate a new generation of field studies.
Abstract
A configuration of the High-Altitude Long-Range Research Aircraft (HALO) as a remote sensing cloud observatory is described, and its use is illustrated with results from the first and second Next-Generation Aircraft Remote Sensing for Validation (NARVAL) field studies. Measurements from the second NARVAL (NARVAL2) are used to highlight the ability of HALO, when configured in this fashion, to characterize not only the distribution of water condensate in the atmosphere, but also its impact on radiant energy transfer and the covarying large-scale meteorological conditions—including the large-scale velocity field and its vertical component. The NARVAL campaigns with HALO demonstrate the potential of airborne cloud observatories to address long-standing riddles in studies of the coupling between clouds and circulation and are helping to motivate a new generation of field studies.