Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Masahiro Sawada x
  • Refine by Access: All Content x
Clear All Modify Search
Masahiro Sawada and Toshiki Iwasaki

Abstract

In this study, the impacts of evaporative cooling from raindrops on a tropical cyclone (TC) are examined using cloud-resolving simulations under an idealized condition. of this study showed that evaporative cooling greatly increases the kinetic energy of a TC and its size because rainbands provide a large amount of condensation heating outside the eyewall. Part II investigates characteristics of simulated rainbands in detail. Rainbands are actively formed, even outside the eyewall, in the experiment including evaporative cooling, whereas they are absent in the experiment without evaporative cooling. Rainbands propagate in the counterclockwise and radially outward direction, and such behaviors are closely related to cold pools. New convective cells are successively generated at the upstream end of a cold pool, which is referred to here as the upstream development. The upstream development organizes spiral-shaped rainbands along a low-level streamline that is azimuthally averaged and propagates them radially outward. Asymmetric flows from azimuthally averaged low-level wind advance cold pool fronts in the normal direction to rainbands, which are referred to here as cross-band propagation. The cross-band propagation deflects the movement of each cell away from the low-level streamlines and rotates it in the counterclockwise direction. Cross-band propagation plays an essential role in the maintenance of rainbands. Advancement of cold pool fronts lifts up the warm and moist air mass slantwise and induces heavy precipitation. Evaporative cooling from raindrops induces downdrafts and gives feedback to the enhancement of cold pools.

Full access
Masahiro Sawada and Toshiki Iwasaki

Abstract

Cloud-resolving simulations of an ideal tropical cyclone (TC) on an f plane are performed to investigate the effects of evaporative cooling on the evolution and structure of a TC. Evaporative cooling has markedly different impacts on the TC development and structure than melting/sublimation cooling because of the formation of rainbands. Evaporative cooling suppresses the organization of a TC at the early development stage. Evaporative cooling effectively forms convective downdrafts that cool and dry the boundary layer. Stabilizing the TC boundary layer reduces convective available potential energy (CAPE) around the eyewall by about 40% and slows the development. However, at the mature stage evaporative cooling steadily develops the TC for a longer period and enlarges the TC size because of rainbands, which are formed by the cold pool associated with evaporative cooling outside the eyewall. The large amounts of latent heating greatly induce the secondary circulation and transport large absolute angular momentum inward around the midtroposphere, resulting in the steady development of the TC. After a three-day integration, both the area-averaged precipitation and the kinetic energy become greater than when evaporative cooling is excluded.

Full access
Udai Shimada, Masahiro Sawada, and Hiroyuki Yamada

Abstract

A ground-based Doppler radar observed the rapid intensification (RI) of Typhoon Goni (2015) for 24 h immediately after it completed an eyewall replacement cycle. Goni’s RI processes were examined by using radar reflectivity and wind fields retrieved by the ground-based velocity track display (GBVTD) technique. The maximum wind at 2-km altitude increased by 30 m s−1 during the first 6 h of RI, and it further increased by 20 m s−1 during the subsequent 12 h. Around the onset of RI, relatively strong outflow (>2 m s−1) was present both inside and outside the radius of maximum wind (RMW) above the boundary layer (BL), suggesting the existence of supergradient flow in and just above the BL. Despite this outflow, angular momentum increased inside the RMW. The low-level RMW contracted rapidly from 50 to 33 km, causing the RMW to slope greatly outward with height. The radius of maximum reflectivity was a few kilometers inside the RMW. A budget analysis of absolute angular momentum showed that the outflow contributed to the contraction of the tangential wind field. During RI, eyewall convection was enhanced, and a well-defined eye appeared. The low-level outflow changed into inflow immediately outside the RMW. Then the tangential wind field and high inertial stability region expanded radially outward, followed by the formation of an outer reflectivity maximum at twice the RMW. The contraction speed of the low-level RMW slowed down.

Full access
Udai Shimada, Masahiro Sawada, and Hiroyuki Yamada
Full access
Udai Shimada, Masahiro Sawada, and Hiroyuki Yamada

Abstract

Intensities (central pressures) of 28 cases of 22 tropical cyclones (TCs) that approached Japan were estimated by using single ground-based Doppler radar observations, and the accuracy and utility of the estimation method were evaluated. The method uses the ground-based velocity track display (GBVTD) technique, which retrieves tangential winds, and the gradient wind balance equation. Before application of the method to the 28 cases, a preliminary experiment was performed with pseudo-Doppler velocities obtained by numerical simulation to confirm that the method could reasonably estimate central pressures. Compared with best track data from the Regional Specialized Meteorological Center (RSMC) Tokyo, the estimated intensities of the 28 cases had a root-mean-square error of 8.37 hPa and showed a bias of 1.51 hPa. This level of accuracy is comparable to or better than the accuracies of Dvorak and satellite microwave-derived estimates. Two distance metrics are defined: 1) the distance between the TC center and the radar location and 2) the distance between the TC center and the weather station whose sea level pressure was used as an anchor for pressure measurement. In general, the accuracy of the Doppler radar estimates was higher when the distance metrics were shorter, as well as when wind retrieval accuracy was better and radar coverage was denser. For TCs with a radius of maximum wind of 20–70 km, the estimated central pressures had a root-mean-square error of 5.55 hPa. These results confirm that Doppler radar intensity estimates have sufficient accuracy and utility for operational use.

Full access
Teruhisa Shimada, Masahiro Sawada, Weiming Sha, and Hiroshi Kawamura

Abstract

This paper investigates the structures of and diurnal variations in low-level easterly winds blowing through the Tsugaru Strait and Mutsu Bay on 5–10 June 2003 using a numerical weather prediction model. Cool air that accompanies prevailing easterly winds owing to the persistence of the Okhotsk high intrudes into the strait and the bay below 500 m during the nighttime and retreats during the daytime. This cool-air intrusion and retreat induce diurnal variations in the winds in the east inlet of the strait, in Mutsu Bay, and in the west exit of the strait. In the east inlet, a daytime increase in air temperature within the strait produces a large air temperature difference with the inflowing cool air, and the resulting pressure gradient force accelerates the winds. The cool air flowing into Mutsu Bay is heated over land before entering the bay during the daytime. The resulting changes in cool-air depth and in pressure gradient force strengthen the daytime winds. In the west exit, local pressure gradient force perturbations are induced by the air temperature difference between warm air over the Japan Sea and cool air within the strait, and by variations in the depth of low-level cool air. The accelerated winds in the west exit extend southwestward in close to geostrophic balance during the daytime and undergo a slight anticyclonic rotation to westerly during the nighttime owing to the dominance of the Coriolis effect.

Full access
Ryuhei Yoshida, Masahiro Sawada, Takeshi Yamazaki, Takeshi Ohta, and Tetsuya Hiyama

Abstract

This study evaluated the effect of recent eastern Siberian land surface changes, such as water surface expansion, on water-energy fluxes and precipitation and focused on land surface parameters using a three-dimensional atmospheric model [the Japan Meteorological Agency Nonhydrostatic model (JMA-NHM)]. Five parameters were set (viz., surface albedo, evaporative efficiency, roughness length, heat capacity, and thermal conductivity), and a response of evaporation and precipitation was evaluated. Increased precipitation corresponded to 75% of the increased evaporation on interparameter average, indicating strong land–atmosphere coupling. Water-energy flux and precipitation responses to water surface expansion were evaluated by two methods: JMA-NHM and the parameter sensitivity method. The latter method used a linear combination of parameter sensitivity on the fluxes and precipitation and parameter changes with land surface change. JMA-NHM demonstrated an increase in evaporation and precipitation and a decrease in downward shortwave radiation with low-level cloud increases. The parameter sensitivity method gave the same order as JMA-NHM in the estimation. This method has minimal calculation cost; thus, water-energy flux and precipitation response with further water surface expansion and decreases in forest area were simulated, producing various land surface data. The enhancement of the precipitation response to evaporation was weak for further water surface expansion in the largely expanded water surface area; however, the ratio increased dramatically for the small water surface expanding area, indicating intense water cycle enhancement at the beginning of water surface expansion. Although grassland formation from forest has minimal impact, if incoming downward shortwave radiation were to increase because of the disappearance of the forest shading effect and the water surface formed by permafrost melting, the water cycle would be enhanced intensely.

Full access
Teruhisa Shimada, Masahiro Sawada, Weiming Sha, and Hiroshi Kawamura

Abstract

This study has investigated structures and diurnal variations of the easterly surface winds blowing throughout the east–west passage comprising the Tsugaru Strait, Mutsu Bay, and circumjacent terrestrial gaps in northern Japan during the summer months. Based on observational and reanalysis data, a representative case study in June 2003 and supplemental statistical analyses are presented. The cool easterly winds accompanied by clouds and fog are blocked by the central mountain range. This condition increases an along-strait sea level pressure (SLP) gradient, which induces strong winds in the west of the strait. The along-strait SLP gradient is enhanced by the developed Okhotsk high and by low pressure systems passing along the southern coast of Japan or over the Japan Sea. Stronger (weaker) and easterly (east-northeasterly) winds are observed during the nighttime (daytime), corresponding to the cool air intrusion from the east (retreat from west). Differences in SLP observed at meteorological observation stations on the east and west can be a good indicator of wind speed in the west of the strait. Meanwhile, the winds over the land also show diurnal variations specific to the times of the prevailing cool easterly winds. The easterly winds over the land are stronger and more divergent across the strait during the daytime than nighttime. This indicates the possibility that the diurnal wind variations are thermally induced. Reduction of diurnal air temperature changes in the east increases east–west thermal contrast. Additionally, the cool air over the strait and the bay can enhance land–sea thermal contrast across the coast.

Full access
Yasutaka Ikuta, Masaki Satoh, Masahiro Sawada, Hiroshi Kusabiraki, and Takuji Kubota

Abstract

In this study, the single-moment 6-class bulk cloud microphysics scheme used in the operational numerical weather prediction system at the Japan Meteorological Agency was improved using the observations of the Global Precipitation Measurement (GPM) core satellite as reference values. The original cloud microphysics scheme has the following biases: underestimation of cloud ice compared to the brightness temperature of the GPM Microwave Imager (GMI) and underestimation of the lower-troposphere rain compared to the reflectivity of GPM Dual-frequency Precipitation Radar (DPR). Furthermore, validation of the dual-frequency rate of reflectivity revealed that the dominant particles in the solid phase of simulation were graupel and deviated from DPR observation. The causes of these issues were investigated using a single-column kinematic model. The underestimation of cloud ice was caused by a high ice-to-snow conversion rate, and the underestimation of precipitation in the lower layers was caused by an excessive number of small-diameter rain particles. The parameterization of microphysics scheme is improved to eliminate the biases in the single-column model. In the forecast obtained using the improved scheme, the underestimation of cloud ice and rain is reduced. Consequently, the prediction errors of hydrometeors were reduced against the GPM satellite observations, and the atmospheric profiles and precipitation forecasts were improved.

Open access
Toshiki Iwasaki, Takamichi Shoji, Yuki Kanno, Masahiro Sawada, Masashi Ujiie, and Koutarou Takaya

Abstract

An analysis method is proposed for polar cold airmass streams from generation to disappearance. It designates a threshold potential temperature θ T at around the turning point of the extratropical direct (ETD) meridional circulation from downward to equatorward in the mass-weighted isentropic zonal mean (MIM) and clarifies the geographical distributions of the cold air mass, the negative heat content (NHC), their horizontal fluxes, and their diabatic change rates on the basis of conservation relations of the air mass and thermodynamic energy. In the Northern Hemispheric winter, the polar cold air mass below θ T = 280 K has two main streams: the East Asian stream and the North American stream. The former grows over the northern part of the Eurasian continent, flows eastward, turns down southeastward toward East Asia via Siberia, and disappears over the western North Pacific Ocean. The latter grows over the Arctic Ocean, flows toward the eastern coast of North America via Hudson Bay, and disappears over the western North Atlantic Ocean. In their exit regions, wave–mean flow interactions are considered to transfer the angular momentum from the cold airstreams to the upward Eliassen–Palm flux and convert the available potential energy to wave energy.

Full access