Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Matt Wilbanks x
  • All content x
Clear All Modify Search
Casey D. Burleyson, Simon P. de Szoeke, Sandra E. Yuter, Matt Wilbanks, and W. Alan Brewer

Abstract

The diurnal cycle of marine stratocumulus in cloud-topped boundary layers is examined using ship-based meteorological data obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx). The high temporal and spatial continuity of the ship data, as well as the 31-day sample size, allows the diurnal transition in degree of coupling of the stratocumulus-topped boundary layer to be resolved. The amplitude of diurnal variation was comparable to the magnitude of longitudinal differences between regions east and west of 80°W for most of the cloud, surface, and precipitation variables examined. The diurnal cycle of precipitation is examined in terms of areal coverage, number of drizzle cells, and estimated rain rate. East of 80°W, the drizzle cell frequency and drizzle area peaks just prior to sunrise. West of 80°W, total drizzle area peaks at 0300 local solar time (LST), 2–3 h before sunrise. Peak drizzle cell frequency is 3 times higher west of 80°W compared to east of 80°W. The waning of drizzle several hours prior to the ramp up of shortwave fluxes may be related to the higher peak drizzle frequencies in the west. The ensemble effect of localized subcloud evaporation of precipitation may make drizzle a self-limiting process where the areal density of drizzle cells is sufficiently high. The daytime reduction in vertical velocity variance in a less coupled boundary layer is accompanied by enhanced stratification of potential temperature and a buildup of moisture near the surface.

Full access
Matt C. Wilbanks, Sandra E. Yuter, Simon P. de Szoeke, W. Alan Brewer, Matthew A. Miller, Andrew M. Hall, and Casey D. Burleyson

Abstract

Density currents (i.e., cold pools or outflows) beneath marine stratocumulus clouds are characterized using 30 days of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An air density increase criterion applied to the Improved Meteorological (IMET) sensor data identified 71 density current front, core (peak density), and tail (dissipating) zones. The similarity in speeds of the mean density current propagation speed (1.8 m s−1) and the mean cloud-level advection relative to the surface layer wind (1.9 m s−1) allowed drizzle cells to deposit elongated density currents in their wakes. Scanning Doppler lidar captured prefrontal updrafts with a mean intensity of 0.91 m s−1 and an average vertical extent of 800 m. Updrafts were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. The observed density currents were 5–10 times thinner and weaker than typical continental thunderstorm cold pools. Nearly 90% of density currents were identified when C-band radar estimated areal average rain rates exceeded 1 mm day−1 over a 30-km diameter. Rather than peaking when rain rates were highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurred with shallow subcloud dry and stable layers. The dry layers may have contributed to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occurred in a large region of predominantly open cells but also occurred in regions of closed cells.

Full access