Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Matthew Carney x
  • Refine by Access: All Content x
Clear All Modify Search
Meagan Carney
Holger Kantz
, and
Matthew Nicol


Particularly important to hurricane risk assessment for coastal regions is finding accurate approximations of return probabilities of maximum wind speeds. Since extremes in maximum wind speed have a direct relationship with minima in the central pressure, accurate wind speed return estimates rely heavily on proper modeling of the central pressure minima. Using the HURDAT2 database, we show that the central pressure minima of hurricane events can be appropriately modeled by a nonstationary extreme value distribution. We also provide and validate a Poisson distribution with a nonstationary rate parameter to model returns of hurricane events. Using our nonstationary models and numerical simulation techniques from established literature, we perform a simulation study to model returns of maximum wind speeds of hurricane events along the North Atlantic coast. We show that our revised model agrees with current data and results in an expectation of higher maximum wind speeds for all regions along the coast, with the highest maximum wind speeds occurring along the northeast seaboard.

Free access
Alan Shapiro
Petra M. Klein
Sean C. Arms
David Bodine
, and
Matthew Carney

The Lake Thunderbird Micronet is a dense network of environmental sensors and a meteorological tower situated on ~10 acres of rural land in central Oklahoma. The Micronet was established in the spring of 2002 as part of a grassroots effort by a team of faculty and researchers at the University of Oklahoma to provide unique training and research opportunities for undergraduate and graduate students in meteorology and related environmental sciences. The history and design of the Micronet and use of the Micronet in undergraduate and graduate student training and research are described. Examples of interesting phenomena sampled at the Micronet are also presented.

Full access