Search Results

You are looking at 1 - 10 of 20 items for

  • Author or Editor: Matthew J. Bunkers x
  • Refine by Access: All Content x
Clear All Modify Search
Full access
Matthew J. Bunkers

Abstract

Vertical wind shear parameters are presented for 60 left-moving supercells across the United States, 53 of which produced severe hail (≥1.9 cm). Hodographs corresponding to environments of left-moving supercells have a tendency to be more linear than those of their right-moving supercell counterparts. When curvature is present in the hodographs of the left-moving supercells, it is typically confined to the lowest 0.5–1 km. Values of 0–6-km wind shear for left-moving supercells—both bulk and cumulative—are within the ranges commonly found in right-moving supercell environments, but the shear values do occur toward the lower end of the spectrum. Conversely, the absolute values of storm-relative helicity (SRH) for left-moving supercells are much smaller, on average, than what occur for right-moving supercells (although SRH values for many right-moving supercells also fall well below general guidelines for mesocyclone development). A significant fraction of the 0–3-km SRH (25%) and 0–1-km SRH (65%) for left-moving supercells is positive, owing to the shallow clockwise curvature of the hodographs. However, nearly all of the 1–3-km SRH for left-moving supercells is negative, with absolute values comparable in magnitude to those for right-moving supercells. A limited climatological analysis of vertical wind shear associated with convective environments across parts of the central United States suggests that clockwise curvature of the low-level shear vector is most common in the central/southern plains, partially explaining the preeminence of right-moving supercells in that area. In contrast, hodographs are more linear over the northern high plains, suggesting left-moving supercells may be relatively more common there. It would be beneficial to implement operational radar algorithms that can detect mesoanticyclones across the United States.

Full access
Matthew J. Bunkers

Abstract

Two shear-based supercell motion forecast methods are assessed to understand how each method performs under differing environmental conditions for observed right-moving supercells. Accordingly, a 573-case observational dataset is partitioned into small versus large values of environmental and storm-related variables such as bulk wind shear, convective available potential energy, mean wind, storm motion, and storm-relative helicity (SRH). In addition, hodographs are partitioned based on the tornado damage scale, as well as where the storm motion falls among the four quadrants. With respect to the 573-case dataset, the largest supercell motion forecast errors generally occur when the (i) observed midlevel (4–5 km AGL) storm-relative winds are either anomalously weak or strong, (ii) observed 0–3-km AGL SRH is large, (iii) supercell motion is fast, (iv) convective inhibition is strong, or (v) the surface–500-mb (1 mb = 1 hPa) RH is low. Moreover, significantly tornadic supercells are biased 1.2 m s−1 slower and farther right of the hodograph than predicted by the Bunkers forecast method, but show very small bias for the modified Rasmussen–Blanchard method (though errors are slightly larger for this method). Conversely, the smallest errors occur when, relative to the overall sample, the (i) observed upper-level (9–10 km AGL) storm-relative winds are strong, (ii) supercell motion is slow or the mean wind is weak, (iii) surface–500-mb RH is high, or (iv) convective inhibition is weak. Errors also are relatively small when storm motion lies in the bottom-left hodograph quadrant.

Full access
Matthew J. Bunkers and Paul L. Smith
Full access
Daniel T. Lindsey and Matthew J. Bunkers

Abstract

A case study of a left-moving supercell with a rapid motion is presented to (i) elucidate differences in anvil orientations between left- and right-moving supercells and (ii) highlight the interaction of the left mover with a tornadic right mover. It is shown how anvil orientations, as viewed from satellite, may be used to assist in the identification of thunderstorms with differing motions and how this applies to splitting supercells. Additionally, the movement of the left mover into the forward flank of the right mover may have temporarily affected its tornadic circulation, as tornadoes occurred both before and after the merger, despite the structure of the right mover being interrupted during the merging process. Given the dearth of literature on thunderstorm mergers in general, and how mergers affect tornadic supercells in particular, this is an area that demands further research.

Full access
Matthew J. Bunkers and Charles A. Doswell III
Full access
Keith D. Sherburn, Matthew J. Bunkers, and Angela J. Mose

Abstract

Straight-line winds are arguably the most challenging element considered by operational forecasters when issuing severe thunderstorm warnings. Determining the potential maximum surface wind gust prior to an observed, measured gust is very difficult. This work builds upon prior research that quantified a relationship between the observed outflow boundary speed and corresponding measured wind gusts. Whereas this prior study was limited to a 30-case dataset over eastern Colorado, the current study comprises 943 cases across the contiguous United States and encompasses all times of day, seasons, and regions while representing various convective modes and associated near-storm environments. The wind gust ratios (WGRs), or the ratio between a measured wind gust and the associated outflow boundary speed, had a nationwide median of 1.44, mean of 1.68, 25th percentile of 1.19, and 75th percentile of 1.91. WGRs varied considerably by region, season, time of day, convective mode, near-storm environment, and outflow boundary speed. WGRs tended to be higher in the plains, Intermountain West, and southern coastal regions, lower in the cool season and during the morning and overnight, and lower in linear convective modes relative to supercell and disorganized modes. Environments with stronger mean winds and low- to midlevel shear vector magnitudes tended to have lower WGRs, whereas those with steeper low-level lapse rates and other thermodynamic characteristics favorable for momentum transfer and evaporative cooling tended to have higher WGRs. As outflow boundary speed increases, WGRs—and their variability—decrease. Applying these findings may help operational meteorologists to provide more accurate severe thunderstorm warnings.

Restricted access
Full access
Matthew J. Bunkers, James R. Miller Jr., and Arthur T. DeGaetano

Abstract

Monthly total precipitation and mean temperature data records extending from the late nineteenth century to 1990 were collected for 147 stations in South Dakota, North Dakota, and portions of adjacent states and provinces. This region, defined as the Northern Plains region (NPR), was examined for patterns associated with the warm phase (ENSO) and the cold phase (LNSO) of the Southern Oscillation to elucidate some of the debate concerning a signal in this area. Based on a correlation analysis, the NPR was treated as having one spatial degree of freedom.

Using Monte Carlo simulations of the Student's t-test statistic, four seasons with significant changes in mean precipitation or temperature during either ENSO or LNSO were identified. A highly significant signal was evident during the ENSO April to October season for precipitation, where the mean precipitation increased 7.21 cm for the 23 events studied. Here 20 of these 23 ENSO events exhibited precipitation above the median value, and 14 of the 23 events were in the upper quartile. In contrast, a strong signal for decreased LNSO precipitation was noted where May to August precipitation averaged 3.91 cm lower during the 17 events, with similar significance values. Complementing the enhanced ENSO warm season precipitation, the August to October ten-iperatme decreased by 2.17°C, with a significant number of events in both the lowest half and lowest quartile. Finally, temperature averaged 4.67°C cooler during LNSO winters. These results will be useful for limited-season prediction of precipitation and temperature tendencies across the NPR.

It is interesting to note that the initial ENSO years did not reveal a significant temperature increase during the NPR winter, which is in contrast to similar studies. However, by slightly modifying the years that were classified as ENSO years, a significant winter temperature response was indicated. This suggests that there is a tendency for warmer NPR winters during ENSO; however, this was not statistically significant.

Full access