Search Results

You are looking at 1 - 10 of 21 items for

  • Author or Editor: Matthew R. Mazloff x
  • All content x
Clear All Modify Search
Matthew R. Mazloff

Abstract

An eddy-permitting state estimate and its adjoint are used to analyze the influence of wind stress perturbations on the transport of the Antarctic Circumpolar Current (ACC) system through Drake Passage. The transport is found to be sensitive to wind stress perturbations both along the ACC path and also in remote regions. The time scale of influence of wind stress perturbations is on the order of 100 days. Regarding spatial scales, the sensitivity of transport to wind stress is relatively smooth in regions of flat topography. In boundary regions and regions with complex topography, however, the sensitivity is enhanced and characterized by shorter length scales of order 100 km. Positive perturbations to the zonal wind stress usually increase the ACC transport, though the wind stress curl is of primary influence where the currents are steered by topography. Highlighting locations where the ACC is especially responsive to air–sea momentum fluxes reveals where an accurate determination of atmospheric winds may best enhance ocean modeling efforts.

Full access
Ivana Cerovečki and Matthew R. Mazloff

Abstract

A coupled ice–ocean eddy-permitting Southern Ocean State Estimate (SOSE) for 2008–10 is used to describe and quantify the processes forming and destroying water in the Subantarctic Mode Water (SAMW) density range (σ θ = 26.7–27.2 kg m−3). All the terms in the temperature and salinity equations have been diagnosed to obtain a three-dimensional and time-varying volume budget for individual isopycnal layers. This study finds that air–sea buoyancy fluxes, diapycnal mixing, advection, and storage are all important to the SAMW volume budget. The formation and destruction of water in the SAMW density range occurs over a large latitude range because of the seasonal migration of the outcrop window. The strongest formation is by wintertime surface ocean heat loss occurring equatorward of the Subantarctic Front. Spring and summertime formation occur in the polar gyres through the freshening of water with σ θ > 27.2 kg m−3, with an important contribution from sea ice melt. Further buoyancy gain by heating is accomplished only after these waters have already been transformed into the SAMW density range. The spatially integrated and time-averaged SAMW formation rate in the ocean surface layer is 7.9 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) by air–sea buoyancy fluxes and 8.8 Sv by diapycnal mixing, and it is balanced by advective export into the interior ocean. Maps show that these average rates are the result of highly variable processes with strong cancellation in both space and time, revealing the complexity of water mass transformation in the three-dimensional Southern Ocean overturning circulation.

Full access
Matthew R. Mazloff, Patrick Heimbach, and Carl Wunsch

Abstract

An eddy-permitting general circulation model of the Southern Ocean is fit by constrained least squares to a large observational dataset during 2005–06. Data used include Argo float profiles, CTD synoptic sections, Southern Elephant Seals as Oceanographic Samplers (SEaOS) instrument-mounted seal profiles, XBTs, altimetric observations [Envisat, Geosat, Jason-1, and Ocean Topography Experiment (TOPEX)/Poseidon], and infrared and microwave radiometer observed sea surface temperature. An adjoint model is used to determine descent directions in minimizing a misfit function, each of whose elements has been weighted by an estimate of the observational plus model error. The model is brought into near agreement with the data by adjusting its control vector, here consisting of initial and meteorological boundary conditions. Although total consistency has not yet been achieved, the existing solution is in good agreement with the great majority of the 2005 and 2006 Southern Ocean observations and better represents these data than does the World Ocean Atlas 2001 (WOA01) climatological product. The estimate captures the oceanic temporal variability and in this respect represents a major improvement upon earlier static inverse estimates. During the estimation period, the Drake Passage volume transport is 153 ± 5 Sv (1 Sv ≡ 106 m3 s−1). The Ross and Weddell polar gyre transports are 20 ± 5 Sv and 40 ± 8 Sv, respectively. Across 32°S there is a surface meridional overturning cell of 12 ± 12 Sv, an intermediate cell of 17 ± 12 Sv, and an abyssal cell of 13 ± 6 Sv. The northward heat and freshwater anomaly transports across 30°S are −0.3 PW and 0.7 Sv, with estimated uncertainties of 0.5 PW and 0.2 Sv. The net rate of wind work is 2.1 ± 1.1 TW. Southern Ocean theories involving short temporal- and spatial-scale dynamics may now be tested with a dynamically and thermodynamically realistic general circulation model solution that is known to be compatible with the modern observational datasets.

Full access
Matthew R. Mazloff, Raffaele Ferrari, and Tapio Schneider

Abstract

The Southern Ocean (SO) limb of the meridional overturning circulation (MOC) is characterized by three vertically stacked cells, each with a transport of about 10 Sv (Sv ≡ 106 m3 s−1). The buoyancy transport in the SO is dominated by the upper and middle MOC cells, with the middle cell accounting for most of the buoyancy transport across the Antarctic Circumpolar Current. A Southern Ocean state estimate for the years 2005 and 2006 with ⅙° resolution is used to determine the forces balancing this MOC. Diagnosing the zonal momentum budget in density space allows an exact determination of the adiabatic and diapycnal components balancing the thickness-weighted (residual) meridional transport. It is found that, to lowest order, the transport consists of an eddy component, a directly wind-driven component, and a component in balance with mean pressure gradients. Nonvanishing time-mean pressure gradients arise because isopycnal layers intersect topography or the surface in a circumpolar integral, leading to a largely geostrophic MOC even in the latitude band of Drake Passage. It is the geostrophic water mass transport in the surface layer where isopycnals outcrop that accomplishes the poleward buoyancy transport.

Full access
Jinbo Wang, Matthew R. Mazloff, and Sarah T. Gille

Abstract

The Kerguelen Plateau is a major topographic feature in the Southern Ocean. Located in the Indian sector and spanning nearly 2000 km in the meridional direction from the polar to the subantarctic region, it deflects the eastward-flowing Antarctic Circumpolar Current and influences the physical circulation and biogeochemistry of the Southern Ocean. The Kerguelen Plateau is known to govern the local dynamics, but its impact on the large-scale ocean circulation has not been explored. By comparing global ocean numerical simulations with and without the Kerguelen Plateau, this study identifies two major Kerguelen Plateau effects: 1) The plateau supports a local pressure field that pushes the Antarctic Circumpolar Current northward. This process reduces the warm-water transport from the Indian to the Atlantic Ocean. 2) The plateau-generated pressure field shields the Weddell Gyre from the influence of the warmer subantarctic and subtropical waters. The first effect influences the strength of the Antarctic Circumpolar Current and the Agulhas leakage, both of which are important elements in the global thermohaline circulation. The second effect results in a zonally asymmetric response of the subpolar gyres to Southern Hemisphere wind forcing.

Full access
Ariane Verdy, Bruce Cornuelle, Matthew R. Mazloff, and Daniel L. Rudnick

Abstract

A data-assimilating ⅓° regional dynamical ocean model is evaluated on its ability to synthesize components of the Tropical Pacific Ocean Observing System. The four-dimensional variational data assimilation (4DVAR) method adjusts initial conditions and atmospheric forcing for overlapping 4-month model runs, or hindcasts, that are then combined to give an ocean state estimate for the period 2010–13. Consistency within uncertainty with satellite SSH and Argo profiles is achieved. Comparison to independent observations from Tropical Atmosphere Ocean (TAO) moorings shows that for time scales shorter than 100 days, the state estimate improves estimates of TAO temperature relative to an optimally interpolated Argo product. The improvement is greater at time scales shorter than 20 days, although unpredicted variability in the TAO temperatures implies that TAO observations provide significant information in that band. Larger discrepancies between the state estimate and independent observations from Spray gliders deployed near the Galápagos, Palau, and Solomon Islands are attributed to insufficient model resolution to capture the dynamics in strong current regions and near coasts. The sea surface height forecast skill of the model is assessed. Model forecasts using climatological forcing and boundary conditions are more skillful than climatology out to 50 days compared to persistence, which is a more skillful forecast than climatology out to approximately 20 days. Hindcasts using reanalysis products for atmospheric forcing and open boundary conditions are more skillful than climatology for approximately 120 days or longer, with the exact time scale depending on the accuracy of the state estimate used for initializing and on the reanalysis forcing. Estimating the model representational error is a goal of these experiments.

Full access
Veronica Tamsitt, Lynne D. Talley, Matthew R. Mazloff, and Ivana Cerovečki

Abstract

The spatial structure of the upper ocean heat budget in the Antarctic Circumpolar Current (ACC) is investigated using the ⅙°, data-assimilating Southern Ocean State Estimate (SOSE) for 2005–10. The ACC circumpolar integrated budget shows that 0.27 PW of ocean heat gain from the atmosphere and 0.38 PW heat gain from divergence of geostrophic heat transport are balanced by −0.58 PW cooling by divergence of Ekman heat transport and −0.09 PW divergence of vertical heat transport. However, this circumpolar integrated balance obscures important zonal variations in the heat budget. The air–sea heat flux shows a zonally asymmetric pattern of ocean heat gain in the Indian and Atlantic sectors and ocean heat loss in the Pacific sector of the ACC. In the Atlantic and Indian sectors of the ACC, the surface ocean heat gain is primarily balanced by divergence of equatorward Ekman heat transport that cools the upper ocean. In the Pacific sector, surface ocean heat loss and cooling due to divergence of Ekman heat transport are balanced by warming due to divergence of geostrophic heat advection, which is similar to the dominant heat balance in the subtropical Agulhas Return Current. The divergence of horizontal and vertical eddy advection of heat is important for warming the upper ocean close to major topographic features, while the divergence of mean vertical heat advection is a weak cooling term. The results herein show that topographic steering and zonal asymmetry in air–sea exchange lead to substantial zonal asymmetries in the heat budget, which is important for understanding the upper cell of the overturning circulation.

Full access
Ivana Cerovečki, Lynne D. Talley, and Matthew R. Mazloff

Abstract

The authors have intercompared the following six surface buoyancy flux estimates, averaged over the years 2005–07: two reanalyses [the recent ECMWF reanalysis (ERA-Interim; hereafter ERA), and the National Centers for Environmental Prediction (NCEP)–NCAR reanalysis 1 (hereafter NCEP1)], two recent flux products developed as an improvement of NCEP1 [the flux product by Large and Yeager and the Southern Ocean State Estimate (SOSE)], and two ad hoc air–sea flux estimates that are obtained by combining the NCEP1 or ERA net radiative fluxes with turbulent flux estimates using the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk formulas with NCEP1 or ERA input variables.

The accuracy of SOSE adjustments of NCEP1 atmospheric fields (which SOSE uses as an initial guess and a constraint) was assessed by verification that SOSE reduces the biases in the NCEP1 fluxes as diagnosed by the Working Group on Air–Sea Fluxes (Taylor), suggesting that oceanic observations may be a valuable constraint to improve atmospheric variables.

Compared with NCEP1, both SOSE and Large and Yeager increase the net ocean heat loss in high latitudes, decrease ocean heat loss in the subtropical Indian Ocean, decrease net evaporation in the subtropics, and decrease net precipitation in polar latitudes. The large-scale pattern of SOSE and Large and Yeager turbulent heat flux adjustment is similar, but the magnitude of SOSE adjustments is significantly larger. Their radiative heat flux adjustments patterns differ. Turbulent heat fluxes determined by combining COARE bulk formulas with NCEP1 or ERA should not be combined with unmodified NCEP1 or ERA radiative fluxes as the net ocean heat gain poleward of 25°S becomes unrealistically large. The other surface flux products (i.e., NCEP1, ERA, Large and Yeager, and SOSE) balance more closely.

Overall, the statistical estimates of the differences between the various air–sea heat flux products tend to be largest in regions with strong ocean mesoscale activity such as the Antarctic Circumpolar Current and the western boundary currents.

Full access
Ivana Cerovečki, Lynne D. Talley, Matthew R. Mazloff, and Guillaume Maze

Abstract

Subantarctic Mode Water (SAMW) is examined using the data-assimilating, eddy-permitting Southern Ocean State Estimate, for 2005 and 2006. Surface formation due to air–sea buoyancy flux is estimated using Walin analysis, and diapycnal mixing is diagnosed as the difference between surface formation and transport across 30°S, accounting for volume change with time. Water in the density range 26.5 < σθ < 27.1 kg m−3 that includes SAMW is exported northward in all three ocean sectors, with a net transport of (18.2, 17.1) Sv (1 Sv ≡ 106 m3 s−1; for years 2005, 2006); air–sea buoyancy fluxes form (13.2, 6.8) Sv, diapycnal mixing removes (−14.5, −12.6) Sv, and there is a volume loss of (−19.3, −22.9) Sv mostly occurring in the strongest SAMW formation locations. The most vigorous SAMW formation is in the Indian Ocean by air–sea buoyancy flux (9.4, 10.9) Sv, where it is partially destroyed by diapycnal mixing (−6.6, −3.1) Sv. There is strong export to the Pacific, where SAMW is destroyed both by air–sea buoyancy flux (−1.1, −4.6) Sv and diapycnal mixing (−5.6, −8.4) Sv. In the South Atlantic, SAMW is formed by air–sea buoyancy flux (5.0, 0.5) Sv and is destroyed by diapycnal mixing (−2.3, −1.1) Sv. Peaks in air–sea flux formation occur at the Southeast Indian and Southeast Pacific SAMWs (SEISAMWs, SEPSAMWs) densities. Formation over the broad SAMW circumpolar outcrop windows is largely from denser water, driven by differential freshwater gain, augmented or decreased by heating or cooling. In the SEISAMW and SEPSAMW source regions, however, formation is from lighter water, driven by differential heat loss.

Full access
Ganesh Gopalakrishnan, Bruce D. Cornuelle, Matthew R. Mazloff, Peter F. Worcester, and Matthew A. Dzieciuch

Abstract

A strongly nonlinear eddy field is present in and around the Subtropical Countercurrent in the Northern Philippine Sea (NPS). A regional implementation of the Massachusetts Institute of Technology general circulation model–Estimating the Circulation and Climate of the Ocean four-dimensional variational (MITgcm-ECCO 4DVAR) assimilation system is found to be able to produce a series of two-month-long dynamically-consistent optimized state estimates between April 2010 and April 2011 for the eddy-rich NPS region. The assimilation provides a stringent dynamical test of the model, showing that a free run of the model forced using adjusted controls remains consistent with the observations for two months. The 4DVAR iterative optimization reduced the total cost function for the observations and controls by 40–50% from the reference solution, initialized using the Hybrid Coordinate Ocean Model 1/12° global daily analysis, achieving residuals approximately equal to the assumed uncertainties for the assimilated observations. The state estimates are assessed by comparing with assimilated and withheld observations and also by comparing one-month model forecasts with future data. The state estimates and forecasts were more skillful than model persistence and the reference solutions. Finally, the continuous state estimates were used to detect and track the eddies, analyze their structure, and quantify their vertically-integrated meridional heat and salt transports.

Restricted access