Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Matthew S. Spydell x
  • All content x
Clear All Modify Search
Matthew S. Spydell, Falk Feddersen, and Jamie Macmahan

Abstract

Oceanographic relative dispersion Dr2 (based on drifter separations r) has been extensively studied, mostly finding either Richardson–Obukhov (Dr2~t3) or enstrophy cascade [Dr2~exp(t)] scaling. Relative perturbation dispersion Dr2 (based on perturbation separation rr 0, where r 0 is the initial separation) has a Batchelor scaling (Dr2~t2) for times less than the r 0-dependent Batchelor time. Batchelor scaling has received little oceanographic attention. GPS-equipped surface drifters were repeatedly deployed on the Inner Shelf off of Pt. Sal, California, in water depths ≤ 40 m. From 12 releases of ≈18 drifters per release, perturbation and regular relative dispersion over ≈4 h are calculated for 250 ≤ r 0 ≤ 1500 m for each release and the entire experiment. The perturbation dispersion Dr2 is consistent with Batchelor scaling for the first 1000–3000 s with larger r 0 yielding stronger dispersion and larger Batchelor times. At longer times, Dr2 and scale-dependent diffusivities begin to suggest Richardson–Obukhov scaling. This applies to both experiment averaged and individual releases. For individual releases, nonlinear internal waves can modulate dispersion. Batchelor scaling is not evident in Dr2 as the correlations between initial and later separations are significant at short time scaling as ~t. Thus, previous studies investigating Dr2(t) are potentially aliased by initial separation effects not present in the perturbation dispersion Dr2(t). As the underlying turbulent velocity wavenumber spectra is inferred from the dispersion power law time dependence, analysis of both Dr2 and Dr2 is critical.

Open access
Matthew S. Spydell, Falk Feddersen, and Sutara Suanda

Abstract

In various oceanic regions, drifter-derived diffusivities reach a temporal maximum and subsequently decrease. Often, these are regions of inhomogeneous eddies, however, the effect of inhomogeneous turbulence on dispersion is poorly understood. The nearshore region (spanning from the surfzone to the inner shelf) also has strong cross-shore inhomogeneous turbulence. Nearshore Lagrangian statistics are estimated from drifter trajectories simulated with a wave-resolving two-dimensional Boussinesq model with random, normally incident, and directionally spread waves. The simulation is idealized and does not include other (wind, tidal, Coriolis) processes. The eddy field cross-shore inhomogeneity affects both the mean cross-shore drift and cross- and alongshore diffusivities. Short-time diffusivities are locally ballistic, and the mean drift is toward the eddy velocity variance maximum. The diffusivities reach a maximum and subsequently decrease, that is, are subdiffusive. The diffusivity maximum and time to maximum are parameterized taking into account the eddy field inhomogeneity. At long times, the cross- and alongshore diffusivities scale as t −1/2 and t −1/4, respectively, which is related to the offshore decay of the eddy intensity. A diffusion equation, with a space-dependent Fickian diffusivity related to the eddy velocity variance, reproduced the short-, intermediate-, and long-time behavior of the mean drift and cross-shore diffusivity. The small Middleton parameter, indicating fixed float dispersion, suggests the Eulerian time scale can parameterize the Lagrangian time scale in this region. Although this idealized simulation had no mean currents, and thus no shear dispersion or mixing suppression, inhomogeneous turbulence effects may be relevant in other regions such as the Antarctic Circumpolar Current (ACC) and western boundary current extensions.

Open access
Matthew S. Spydell, Falk Feddersen, and Jamie Macmahan

Abstract

Differential kinematic flow properties (DKP), such as vertical vorticity, have been estimated from surface drifters. However, previous DKP error estimates were a posteriori and did not include correlated errors across drifters. To accurately estimate submesoscale (≤1 km) DKPs from drifters, errors must be better understood. Here, the a priori vorticity standard error is derived that depends upon the number of drifters in the cluster, the drifter cluster major and minor axes lengths, the instrument velocity error, and the cross-drifter error correlation. Two stationary GPS experiments, with zero vorticity, were performed at separations of O(101–103) m to understand vorticity error and test the derivation using 1 Hz position differences and Doppler shift velocities. Vorticity errors of ±5f (where f is the local Coriolis parameter)were found for ≈40 m separations. The frequency-dependent velocity variances and GPS-to-GPS correlations are quantified. Vorticity estimated with a “blended” velocity has reduced error. The stationary vorticity error can be well predicted given velocity error, correlation, and minor axis length. Vorticity error analysis is applied to submesoscale-sampling in situ GPS drifters near Point Sal, California. The derivation predicts when large high-frequency vorticity fluctuations (indicating noise) occur. Previously, cluster area or ellipticity were used as criteria to distinguish error. We show that the drifter cluster minor axis (narrowness) is a key time-dependent factor affecting vorticity error, and even for velocity errors <0.004 m s−1, the vorticity error exceeds ±5f when cluster minor axis <50 m. These results will aid submesoscale drifter deployment planning.

Open access
Nirnimesh Kumar, James A. Lerczak, Tongtong Xu, Amy F. Waterhouse, Jim Thomson, Eric J. Terrill, Christy Swann, Sutara H. Suanda, Matthew S. Spydell, Pieter B. Smit, Alexandra Simpson, Roland Romeiser, Stephen D. Pierce, Tony de Paolo, André Palóczy, Annika O’Dea, Lisa Nyman, James N. Moum, Melissa Moulton, Andrew M. Moore, Arthur J. Miller, Ryan S. Mieras, Sophia T. Merrifield, Kendall Melville, Jacqueline M. McSweeney, Jamie MacMahan, Jennifer A. MacKinnon, Björn Lund, Emanuele Di Lorenzo, Luc Lenain, Michael Kovatch, Tim T. Janssen, Sean Haney, Merrick C. Haller, Kevin Haas, Derek J. Grimes, Hans C. Graber, Matt K. Gough, David A. Fertitta, Falk Feddersen, Christopher A. Edwards, William Crawford, John Colosi, C. Chris Chickadel, Sean Celona, Joseph Calantoni, Edward F. Braithwaite III, Johannes Becherer, John A. Barth, and Seongho Ahn

Abstract

The inner shelf, the transition zone between the surf zone and the mid shelf, is a dynamically complex region with the evolution of circulation and stratification driven by multiple physical processes. Cross-shelf exchange through the inner shelf has important implications for coastal water quality, ecological connectivity, and lateral movement of sediment and heat. The Inner-Shelf Dynamics Experiment (ISDE) was an intensive, coordinated, multi-institution field experiment from Sep.-Oct. 2017, conducted from the mid shelf, through the inner shelf and into the surf zone near Point Sal, CA. Satellite, airborne, shore- and ship-based remote sensing, in-water moorings and ship-based sampling, and numerical ocean circulation models forced by winds, waves and tides were used to investigate the dynamics governing the circulation and transport in the inner shelf and the role of coastline variability on regional circulation dynamics. Here, the following physical processes are highlighted: internal wave dynamics from the mid shelf to the inner shelf; flow separation and eddy shedding off Point Sal; offshore ejection of surfzone waters from rip currents; and wind-driven subtidal circulation dynamics. The extensive dataset from ISDE allows for unprecedented investigations into the role of physical processes in creating spatial heterogeneity, and nonlinear interactions between various inner-shelf physical processes. Overall, the highly spatially and temporally resolved oceanographic measurements and numerical simulations of ISDE provide a central framework for studies exploring this complex and fascinating region of the ocean.

Full access