Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Maurice Bluestein x
  • Refine by Access: All Content x
Clear All Modify Search
Maurice Bluestein and Jack Zecher

Winter weather often shows a severity marked by low dry-bulb temperature combined with high wind speed. The wind chill factor is now a standard meteorological term to express this severity. This factor, or more appropriately the wind chill temperature, represents that air temperature without wind that would effect the same heat loss rate from bare human skin as that due to the actual combined dry-bulb temperature and wind. Currently used wind chill factors derive from a study conducted by the U.S. Antarctic Service over 50 years ago. The data then collected was used to develop a cooling rate as a function of wind speed, which in turn was used to formulate an equation still in use today. The equation is based on primitive experiments with a container of freezing water and an unrealistically high human skin temperature. A more appropriate estimate of the thermal properties of the skin and implementation of modern heat transfer theory can provide a more realistic wind chill factor. Recent research studies suggest that the wind chill equation currently used overestimates the effect of the wind for the range of temperatures and wind speeds expected. This paper provides a new formula for the wind chill factor and a chart of wind chill temperatures for various combinations of dry-bulb temperatures and wind speeds as measured by standard techniques.

Full access
Randall Osczevski and Maurice Bluestein
Full access
Randall Osczevski and Maurice Bluestein

The formula used in the U.S. and Canada to express the combined effect of wind and low temperature on how cold it feels was changed in November 2001. Many had felt that the old formula for equivalent temperature, derived in the 1960s from Siple and Passel's flawed but quite useful Wind Chill Index, unnecessarily exaggerated the severity of the weather. The new formula is based on a mathematical model of heat flow from the upwind side of a head-sized cylinder moving at walking speed into the wind. The paper details the assumptions that were made in generating the new wind chill charts. It also points out weaknesses in the concept of wind chill equivalent temperature, including its steady-state character and a seemingly paradoxical effect of the internal thermal resistance of the cylinder on comfort and equivalent temperature. Some improvements and alternatives are suggested.

Full access