Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Maxi Boettcher x
  • Refine by Access: All Content x
Clear All Modify Search
Maxi Boettcher and Heini Wernli

Abstract

The life cycle of a North Atlantic cyclone in December 2005 that included a rapid propagation phase as a diabatic Rossby wave (DRW) is investigated by means of operational analyses and deterministic forecasts from the ECMWF. A quasigeostrophic omega diagnostic has been applied to assess the impact of upper-level forcing during the genesis, propagation, and intensification phase, respectively. The system was generated in the Gulf of Mexico as a mesoscale convective vortex (MCV) influenced by vertical motion forcing from a nearby upper-level trough. The DRW propagation phase was characterized by a shallow, low-level, diabatically produced potential vorticity (PV) anomaly that rapidly propagated along the southern border of an intense baroclinic zone. No significant upper-level forcing could be identified during this phase of the development. Eventually, explosive intensification occurred as the region of vertical motion forced by an approaching upper-level trough reached the position of the DRW. The rapid intensification of 34 hPa in 24 h led to a mature extratropical cyclone in the central North Atlantic with marked frontal structures associated with a pronounced PV tower.

The performance of four operational deterministic ECMWF forecasts has been investigated for the DRW propagation and cyclone intensification. The forecasts showed a highly variable skill. Despite the fact that the DRW was initially well represented in all forecasts, two of them failed to capture the explosive intensification. By applying a DRW tracking tool, the low-level baroclinicity downstream of the DRW and the moisture supply to the south of the DRW could be identified as the key environmental parameters during DRW propagation. The subsequent cyclone intensification went wrong in two of the forecasts because of the missing interaction of the DRW and the upper-level trough. It is shown that this interaction can fail if the intensity of the DRW and/or the approaching upper-level wave are too weak, or in case of an erroneous structure of the upper-level trough leading to a phasing problem of the vertical interaction with the DRW. Therefore, the DRW intensification bears similar characteristics and forecast challenges as the extratropical reintensification of tropical cyclones.

Full access
Maxi Boettcher and Heini Wernli

Abstract

Diabatic Rossby waves (DRWs) are low-tropospheric positive potential vorticity (PV) anomalies in moist and sufficiently baroclinic regions. They regenerate continuously by moist-diabatic processes and potentially develop into explosively intensifying cyclones. In this study a specific DRW-tracking algorithm is developed and applied to operational ECMWF analyses to compile a first climatology of DRWs in the Northern Hemisphere for the years 2001–10. DRWs are more frequent over the North Pacific than over the North Atlantic with on average 81 and 43 systems per year, respectively. Less than 15% of these systems intensify explosively, on average 12 per year over the Pacific and 5 over the Atlantic. DRWs are most frequent in summer but most of the explosively intensifying DRWs occur in autumn and winter. DRWs are generated typically between 30°–50°N over the eastern parts of the continents and the western/central parts of the oceans. They propagate fairly zonally along the midlatitude baroclinic zone. The generation of the initial low-tropospheric PV anomalies goes along with precipitation processes in characteristic flow patterns, which correspond to 1) flow around the subtropical high against the midlatitude baroclinic zone, 2) flow induced by an upper-level cutoff or a (tropical) cyclone against the baroclinic zone, 3) upper-level trough-induced ascent at the baroclinic zone, and 4) PV remnants of a tropical cyclone or a mesoscale convective system that are advected into the baroclinic zone where they start propagating as a DRW. In most cases, explosive intensification of DRWs occurs through interaction with a preexisting upper-level trough.

Full access
Hanin Binder, Maxi Boettcher, Hanna Joos, and Heini Wernli

Abstract

The role of warm conveyor belts (WCBs) and their associated positive low-level potential vorticity (PV) anomalies are investigated for extratropical cyclones in Northern Hemisphere winter, using ERA-Interim and composite techniques. The Spearman correlation coefficient of 0.68 implies a moderate to strong correlation between cyclone intensification and WCB strength. Hereby, cyclone intensification is quantified by the normalized maximum 24-h central sea level pressure deepening and WCB strength by the WCB air mass associated with the cyclone’s 24-h period of strongest deepening. Explosively intensifying cyclones typically have strong WCBs and pronounced WCB-related PV production in the cyclone center; they are associated with a WCB of type W2, which ascends close to the cyclone center. Cyclones with similar WCB strength but weak intensification are either diabatic Rossby waves, which do not interact with an upper-level disturbance, or cyclones where much of the WCB-related PV production occurs far from the cyclone center and thereby does not contribute strongly to cyclone deepening (WCB of type W1, which ascends mainly along the cold front). The category of explosively intensifying cyclones with weak WCBs is inhomogeneous but often characterized by a very low tropopause or latent heating independent of WCBs. These findings reveal that (i) diabatic PV production in WCBs is essential for the intensification of many explosive cyclones, (ii) the importance of WCBs for cyclone development strongly depends on the location of the PV production relative to the cyclone center, and (iii) a minority of explosive cyclones is not associated with WCBs.

Full access
Stephan Pfahl, Erica Madonna, Maxi Boettcher, Hanna Joos, and Heini Wernli

Abstract

The role of moisture for extratropical atmospheric dynamics is particularly pronounced within warm conveyor belts (WCBs), which are characterized by intense latent heat release and precipitation formation. Based on the WCB climatology for the period 1979–2010 presented in Part I, two important aspects of the WCB moisture cycle are investigated: the evaporative moisture sources and the relevance of WCBs for total and extreme precipitation. The most important WCB moisture source regions are the western North Atlantic and North Pacific in boreal winter and the South Pacific and western South Atlantic in boreal summer. The strongest continental moisture source is South America. During winter, source locations are mostly local and over the ocean, and the associated surface evaporation occurs primarily during 5 days prior to the start of the WCB ascent. Long-range transport and continental moisture recycling are much more important in summer, when a substantial fraction of the evaporation occurs more than 10 days before the ascent. In many extratropical regions, WCB moisture supply is related to anomalously strong surface evaporation, enforced by low relative humidity and high winds over the ocean. WCBs are highly relevant for total and extreme precipitation in many parts of the extratropics. For instance, the percentage of precipitation extremes directly associated with a WCB is higher than 70%–80% over southeastern North America, Japan, and large parts of southern South America. A proper representation of WCBs in weather forecast and climate models is thus essential for the correct prediction of extreme precipitation events.

Full access
Elisa Spreitzer, Roman Attinger, Maxi Boettcher, Richard Forbes, Heini Wernli, and Hanna Joos

Abstract

The upper-level potential vorticity (PV) structure plays a key role in the evolution of extratropical weather systems. PV is modified by nonconservative processes, such as cloud latent heating, radiative transfer, and turbulence. Using a Lagrangian method, material PV modification near the tropopause is attributed to specific parameterized processes in the global model of the European Centre for Medium-Range Weather Forecasts (ECMWF). In a case study, several flow features identified in a vertical section across an extratropical cyclone experienced strong PV modification. In particular clear-air turbulence at the jet stream is found to be a relevant process (i) for the PV structure of an upper-level front–jet system, corroborating previous observation-based findings of turbulent PV generation; (ii) for the purely turbulent decay of a tropopause fold, identified as an effective process of stratosphere–troposphere exchange; and (iii) in the ridge, where the Lagrangian accumulated turbulent PV modification exhibits a distinct vertical pattern, potentially impacting the strength of the tropopause inversion layer. In contrast, cloud processes affect the near-tropopause PV structure above a warm conveyor belt outflow in the ridge and above cold-sector convection. In agreement with previous studies, radiative PV production dominates in regions with an anomalously low tropopause, where both radiation and convection act to increase the vertical PV gradient across the tropopause. The particular strengths of the Lagrangian diagnostic are that it connects prominent tropopause structures with nonconservative PV modification along the flow and that it quantifies the relative importance of turbulence, radiation, and cloud processes for these modifications.

Full access
Andreas Schäfler, George Craig, Heini Wernli, Philippe Arbogast, James D. Doyle, Ron McTaggart-Cowan, John Methven, Gwendal Rivière, Felix Ament, Maxi Boettcher, Martina Bramberger, Quitterie Cazenave, Richard Cotton, Susanne Crewell, Julien Delanoë, Andreas Dörnbrack, André Ehrlich, Florian Ewald, Andreas Fix, Christian M. Grams, Suzanne L. Gray, Hans Grob, Silke Groß, Martin Hagen, Ben Harvey, Lutz Hirsch, Marek Jacob, Tobias Kölling, Heike Konow, Christian Lemmerz, Oliver Lux, Linus Magnusson, Bernhard Mayer, Mario Mech, Richard Moore, Jacques Pelon, Julian Quinting, Stephan Rahm, Markus Rapp, Marc Rautenhaus, Oliver Reitebuch, Carolyn A. Reynolds, Harald Sodemann, Thomas Spengler, Geraint Vaughan, Manfred Wendisch, Martin Wirth, Benjamin Witschas, Kevin Wolf, and Tobias Zinner

Abstract

The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe.

Open access
Christiane Voigt, Ulrich Schumann, Andreas Minikin, Ahmed Abdelmonem, Armin Afchine, Stephan Borrmann, Maxi Boettcher, Bernhard Buchholz, Luca Bugliaro, Anja Costa, Joachim Curtius, Maximilian Dollner, Andreas Dörnbrack, Volker Dreiling, Volker Ebert, Andre Ehrlich, Andreas Fix, Linda Forster, Fabian Frank, Daniel Fütterer, Andreas Giez, Kaspar Graf, Jens-Uwe Grooß, Silke Groß, Katharina Heimerl, Bernd Heinold, Tilman Hüneke, Emma Järvinen, Tina Jurkat, Stefan Kaufmann, Mareike Kenntner, Marcus Klingebiel, Thomas Klimach, Rebecca Kohl, Martina Krämer, Trismono Candra Krisna, Anna Luebke, Bernhard Mayer, Stephan Mertes, Sergej Molleker, Andreas Petzold, Klaus Pfeilsticker, Max Port, Markus Rapp, Philipp Reutter, Christian Rolf, Diana Rose, Daniel Sauer, Andreas Schäfler, Romy Schlage, Martin Schnaiter, Johannes Schneider, Nicole Spelten, Peter Spichtinger, Paul Stock, Adrian Walser, Ralf Weigel, Bernadett Weinzierl, Manfred Wendisch, Frank Werner, Heini Wernli, Martin Wirth, Andreas Zahn, Helmut Ziereis, and Martin Zöger

Abstract

The Midlatitude Cirrus experiment (ML-CIRRUS) deployed the High Altitude and Long Range Research Aircraft (HALO) to obtain new insights into nucleation, life cycle, and climate impact of natural cirrus and aircraft-induced contrail cirrus. Direct observations of cirrus properties and their variability are still incomplete, currently limiting our understanding of the clouds’ impact on climate. Also, dynamical effects on clouds and feedbacks are not adequately represented in today’s weather prediction models.

Here, we present the rationale, objectives, and selected scientific highlights of ML-CIRRUS using the G-550 aircraft of the German atmospheric science community. The first combined in situ–remote sensing cloud mission with HALO united state-of-the-art cloud probes, a lidar and novel ice residual, aerosol, trace gas, and radiation instrumentation. The aircraft observations were accompanied by remote sensing from satellite and ground and by numerical simulations.

In spring 2014, HALO performed 16 flights above Europe with a focus on anthropogenic contrail cirrus and midlatitude cirrus induced by frontal systems including warm conveyor belts and other dynamical regimes (jet streams, mountain waves, and convection). Highlights from ML-CIRRUS include 1) new observations of microphysical and radiative cirrus properties and their variability in meteorological regimes typical for midlatitudes, 2) insights into occurrence of in situ–formed and lifted liquid-origin cirrus, 3) validation of cloud forecasts and satellite products, 4) assessment of contrail predictability, and 5) direct observations of contrail cirrus and their distinction from natural cirrus. Hence, ML-CIRRUS provides a comprehensive dataset on cirrus in the densely populated European midlatitudes with the scope to enhance our understanding of cirrus clouds and their role for climate and weather.

Full access