Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Maxime Ballarotta x
  • All content x
Clear All Modify Search
Kristofer Döös, Johan Nilsson, Jonas Nycander, Laurent Brodeau, and Maxime Ballarotta

Abstract

A new global streamfunction is presented and denoted the thermohaline streamfunction. This is defined as the volume transport in terms of temperature and salinity (hence no spatial variables). The streamfunction is used to analyze and quantify the entire World Ocean conversion rate between cold/warm and fresh/saline waters. It captures two main cells of the global thermohaline circulation, one corresponding to the conveyor belt and one corresponding to the shallow tropical circulation. The definition of a thermohaline streamfunction also enables a new method of estimating the turnover time as well as the heat and freshwater transports of the conveyor belt. The overturning time of the conveyor belt is estimated to be between 1000 and 2000 yr, depending on the choice of stream layer. The heat and freshwater transports of these two large thermohaline cells have been calculated by integrating the thermohaline streamfunction over the salinity or temperature, yielding a maximum heat transport of the conveyor belt of 1.2 PW over the 34.2-PSU salinity surface and a freshwater transport of 0.8 Sv (1 Sv ≡ 106 m3 s−1) over the 9°C isotherm. This is a measure of the net interocean exchange of heat between the Atlantic and Indo-Pacific due to the thermohaline circulation.

Full access
Maxime Ballarotta, Clément Ubelmann, Marine Rogé, Florent Fournier, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolat Picot

Abstract

The dynamic optimal interpolation (DOI) method merges altimetric sea surface height (SSH) data into maps that are continuous in time and space. Unlike the traditional linear optimal interpolation (LOI) method, DOI has the advantage of considering a nonlinear temporal propagation of the SSH field. DOI has been successfully applied to along-track pseudo-observations in observing system simulation experiments (OSSEs), demonstrating a reduction in interpolation error in highly turbulent regions compared to LOI mapping. In the present study, we further extend the validation of the DOI method by an observing system experiment (OSE). We applied and validated the DOI approach with real nadir-altimetric observations in four regional configurations. Overall, the qualitative and quantitative assessments of these realistic SSH maps confirm the higher level of performance of the DOI approach in turbulent regions. It is more of a challenge to outperform the conventional LOI mapping in coastal and low-energy regions. Validations against LOI maps distributed by the Copernicus Marine Environment Monitoring Service indicate a 10%–15% increase in average performance and an improved resolution limit toward shorter wavelengths. The DOI method also shows improved mesoscale mapping of intense jets and fronts and reveals new eddies with smoother trajectories.

Restricted access
Florian Le Guillou, Sammy Metref, Emmanuel Cosme, Julien Le Sommer, Clément Ubelmann, Jacques Verron, and Maxime Ballarotta

Abstract

During the past 25 years, altimetric observations of the ocean surface from space have been mapped to provide two dimensional sea surface height (SSH) fields which are crucial for scientific research and operational applications. The SSH fields can be reconstructed from conventional altimetric data using temporal and spatial interpolation. For instance, the standardDUACS products are created with an optimal interpolation method which is effective for both low temporal and low spatial resolution. However, the upcoming next-generation SWOT mission will provide very high spatial resolution but with low temporal resolution.

The present paper makes the case that this temporal-spatial discrepancy induces the need for new advanced mapping techniques involving information on the ocean dynamics. An algorithm is introduced, dubbed the BFN-QG, that uses a simple data assimilation method, the back-and-forth nudging, to interpolate altimetric data while respecting quasigeostrophic dynamics. The BFN-QG is tested in an observing system simulation experiments and compared to the DUACS products. The experiments consider as reference the high-resolution numerical model simulation NATL60 from which are produced realistic data: four conventional altimetric nadirs and SWOT data. In a combined nadirs and SWOT scenario, the BFN-QG substantially improves the mapping by reducing the root-mean-square errors and increasing the spectral effective resolution by 40km. Also, the BFN-QG method can be adapted to combine large-scale corrections from nadirs data and small-scale corrections from SWOT data so as to reduce the impact of SWOT correlated noises and still provide accurate SSH maps.

Restricted access