Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Meiry S. Sakamoto x
  • All content x
Clear All Modify Search
Luiz A. T. Machado, Maria A. F. Silva Dias, Carlos Morales, Gilberto Fisch, Daniel Vila, Rachel Albrecht, Steven J. Goodman, Alan J. P. Calheiros, Thiago Biscaro, Christian Kummerow, Julia Cohen, David Fitzjarrald, Ernani L. Nascimento, Meiry S. Sakamoto, Christopher Cunningham, Jean-Pierre Chaboureau, Walter A. Petersen, David K. Adams, Luca Baldini, Carlos F. Angelis, Luiz F. Sapucci, Paola Salio, Henrique M. J. Barbosa, Eduardo Landulfo, Rodrigo A. F. Souza, Richard J. Blakeslee, Jeffrey Bailey, Saulo Freitas, Wagner F. A. Lima, and Ali Tokay

CHUVA, meaning “rain” in Portuguese, is the acronym for the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (GPM). The CHUVA project has conducted five field campaigns; the sixth and last campaign will be held in Manaus in 2014. The primary scientific objective of CHUVA is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. The five CHUVA campaigns were designed to investigate specific tropical weather regimes. The first two experiments, in Alcantara and Fortaleza in northeastern Brazil, focused on warm clouds. The third campaign, which was conducted in Belém, was dedicated to tropical squall lines that often form along the sea-breeze front. The fourth campaign was in the Vale do Paraiba of southeastern Brazil, which is a region with intense lightning activity. In addition to contributing to the understanding of cloud process evolution from storms to thunderstorms, this fourth campaign also provided a high-fidelity total lightning proxy dataset for the NOAA Geostationary Operational Environmental Satellite (GOES)-R program. The fifth campaign was carried out in Santa Maria, in southern Brazil, a region of intense hailstorms associated with frequent mesoscale convective complexes. This campaign employed a multimodel high-resolution ensemble experiment. The data collected from contrasting precipitation regimes in tropical continental regions allow the various cloud processes in diverse environments to be compared. Some examples of these previous experiments are presented to illustrate the variability of convection across the tropics.

Full access