Search Results

You are looking at 1 - 10 of 37 items for

  • Author or Editor: Michael Ek x
  • Refine by Access: All Content x
Clear All Modify Search
Sam Chang
and
Michael Ek

Abstract

Modifications to the formulations in the recently published paper by Ek and Mahrt are presented. One table and three figures in that paper have also been revised.

Full access
L. Mahrt
and
Michael Ek

Abstract

The Penman relationship for potential evaporation is modified to simply include the influence of atmospheric stability on turbulent transport of water vapor. Explicit expressions for the stability-dependent, surface exchange coefficient developed by Louis are used. The diurnal variation of potential evaporation is computed for the stability-dependent and original Penman relationships using Wangara data.

The influence of afternoon instability increases the aerodynamic term of the modified Penman relationship by 50% or more on days with moderate instability. However, the unmodified Penman relationship predicts values of daily potential evaporation close to that of the stability-dependent relationship. This agreement is partly due to compensating overestimation during nighttime hours. Errors due to use of daily-averaged variables are examined in detail by evaluating the nonlinear interactions between the diurnal variation of the variables in the Penman relationship.

A simpler method for estimating the exchange coefficient is constructed from an empirical relationship between the radiation Richardson number and the Obukhov length. This method is less accurate, but it allows estimation of the stability-dependent exchange coefficient using only parameters already required for evaluation of the Penman relationship. Finally, the diurnal variation of the atmospheric resistance coefficient appearing in the Penman-Monteith relationship is presented.

Full access
Rongqian Yang
,
Michael Ek
, and
Jesse Meng

Abstract

Surface water and energy budgets from the National Centers for Environmental Prediction–U.S. Department of Energy (NCEP–DOE) Atmospheric Model Intercomparison Project (AMIP-II) Global Reanalysis 2 (GR2), the North American Regional Reanalysis (NARR), and the NCEP Climate Forecast System Reanalysis (CFSR) are compared here with each other and with available observations over the Mississippi River basin. The comparisons in seasonal cycle, interannual variation, and annual mean over a 31-yr period show that there are a number of noticeable differences and similarities in the large-scale basin averages. Warm season precipitation and runoff in the GR2 are too large compared to the observations, and seasonal surface water variation is small. By contrast, the precipitation in both NARR and CFSR is more reasonable and in better agreement with the observation, although the corresponding seasonal runoff is very small. The main causes of the differences in both surface parameterization and approach used in assimilating the observed precipitation datasets and snow analyses are then discussed. Despite the discrepancies in seasonal water budget components, seasonal energy budget terms in the three reanalyses are close to each other and to available observations. The interannual variations in both water and energy budgets are comparable. This study shows that the CFSR achieves a large improvement over the GR2, indicating that the CFSR dataset can be used in climate variability studies. Nonetheless, improved land surface parameterization schemes and data assimilation techniques are needed to depict the surface water and energy climates better, in particular, the variation in seasonal runoff.

Full access
Joseph A. Santanello Jr.
,
Mark A. Friedl
, and
Michael B. Ek

Abstract

The convective planetary boundary layer (PBL) integrates surface fluxes and conditions over regional and diurnal scales. As a result, the structure and evolution of the PBL contains information directly related to land surface states. To examine the nature and magnitude of land–atmosphere coupling and the interactions and feedbacks controlling PBL development, the authors used a large sample of radiosonde observations collected at the southern Atmospheric Research Measurement Program–Great Plains Cloud and Radiation Testbed (ARM-CART) site in association with simulations of mixed-layer growth from a single-column PBL/land surface model. The model accurately predicts PBL evolution and realistically simulates thermodynamics associated with two key controls on PBL growth: atmospheric stability and soil moisture. The information content of these variables and their influence on PBL height and screen-level temperature can be characterized using statistical methods to describe PBL–land surface coupling over a wide range of conditions. Results also show that the first-order effects of land–atmosphere coupling are manifested in the control of soil moisture and stability on atmospheric demand for evapotranspiration and on the surface energy balance. Two principal land–atmosphere feedback regimes observed during soil moisture drydown periods are identified that complicate direct relationships between PBL and land surface properties, and, as a result, limit the accuracy of uncoupled land surface and traditional PBL growth models. In particular, treatments for entrainment and the role of the residual mixed layer are critical to quantifying diurnal land–atmosphere interactions.

Full access
Rongqian Yang
,
Kenneth Mitchell
,
Jesse Meng
, and
Michael Ek

Abstract

To examine the impact from land model upgrades and different land initializations on the National Centers for Environmental Prediction (NCEP)’s Climate Forecast System (CFS), extensive T126 CFS experiments are carried out for 25 summers with 10 ensemble members using the old Oregon State University (OSU) land surface model (LSM) and the new Noah LSM. The CFS using the Noah LSM, initialized in turn with land states from the NCEP–Department of Energy Global Reanalysis 2 (GR-2), Global Land Data System (GLDAS), and GLDAS climatology, is compared to the CFS control run using the OSU LSM initialized with the GR-2 land states. Using anomaly correlation as a primary measure, the summer-season prediction skill of the CFS using different land models and different initial land states is assessed for SST, precipitation, and 2-m air temperature over the contiguous United States (CONUS) on an ensemble basis.

Results from these CFS experiments indicate that upgrading from the OSU LSM to the Noah LSM improves the overall CONUS June–August (JJA) precipitation prediction, especially during ENSO neutral years. Such an enhancement in CFS performance requires the execution of a GLDAS with the very same Noah LSM as utilized in the land component of the CFS, while improper initializations of the Noah LSM using the GR-2 land states lead to degraded CFS performance. In comparison with precipitation, the land upgrades have a relatively small impact on both of the SST and 2-m air temperature predictions.

Full access
Weizhong Zheng
,
Michael Ek
,
Kenneth Mitchell
,
Helin Wei
, and
Jesse Meng

Abstract

This study examines the performance of the NCEP Global Forecast System (GFS) surface layer parameterization scheme for strongly stable conditions over land in which turbulence is weak or even disappears because of high near-surface atmospheric stability. Cases of both deep snowpack and snow-free conditions are investigated. The results show that decoupling and excessive near-surface cooling may appear in the late afternoon and nighttime, manifesting as a severe cold bias of the 2-m surface air temperature that persists for several hours or more. Concurrently, because of negligible downward heat transport from the atmosphere to the land, a warm temperature bias develops at the first model level. The authors test changes to the stable surface layer scheme that include introduction of a stability parameter constraint that prevents the land–atmosphere system from fully decoupling and modification to the roughness-length formulation. GFS sensitivity runs with these two changes demonstrate the ability of the proposed surface layer changes to reduce the excessive near-surface cooling in forecasts of 2-m surface air temperature. The proposed changes prevent both the collapse of turbulence in the stable surface layer over land and the possibility of numerical instability resulting from thermal decoupling between the atmosphere and the surface. The authors also execute and evaluate daily GFS 7-day test forecasts with the proposed changes spanning a one-month period in winter. The assessment reveals that the systematic deficiencies and substantial errors in GFS near-surface 2-m air temperature forecasts are considerably reduced, along with a notable reduction of temperature errors throughout the lower atmosphere and improvement of forecast skill scores for light and medium precipitation amounts.

Full access
Anil Kumar
,
Fei Chen
,
Michael Barlage
,
Michael B. Ek
, and
Dev Niyogi

Abstract

The impact of 8-day-averaged data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor—namely, the 1-km leaf area index, absorbed photosynthetic radiation, and land-use data—is investigated for use in the Weather Research and Forecasting (WRF) model for regional weather prediction. These high-resolution, near-real-time MODIS data are hypothesized to enhance the representation of land–atmosphere interactions and to potentially improve the WRF model forecast skill for temperature, surface moisture, surface fluxes, and soil temperature. To test this hypothesis, the impact of using MODIS-based land surface data on surface energy and water budgets was assessed within the “Noah” land surface model with two different canopy-resistance schemes. An ensemble of six model experiments was conducted using the WRF model for a typical summertime episode over the U.S. southern Great Plains that occurred during the International H2O Project (IHOP_2002) field experiment. The six model experiments were statistically analyzed and showed some degree of improvement in surface latent heat flux and sensible heat flux, as well as surface temperature and moisture, after land use, leaf area index, and green vegetation fraction data were replaced by remotely sensed data. There was also an improvement in the WRF-simulated temperature and boundary layer moisture with MODIS data in comparison with the default U.S. Geological Survey land-use and leaf area index inputs. Overall, analysis suggests that recalibration and improvements to both the input data and the land model help to improve estimation of surface and soil parameters and boundary layer moisture and led to improvement in simulating convection in WRF runs. Incorporating updated land conditions provided the most notable improvements, and the mesoscale model performance could be further enhanced when improved land surface schemes become available.

Full access
Kingtse C. Mo
,
Lindsey N. Long
,
Youlong Xia
,
S. K. Yang
,
Jae E. Schemm
, and
Michael Ek

Abstract

Drought indices derived from the Climate Forecast System Reanalysis (CFSR) are compared with indices derived from the ensemble North American Land Data Assimilation System (NLDAS) and the North American Regional Reanalysis (NARR) over the United States. Uncertainties in soil moisture, runoff, and evapotranspiration (E) from three systems are assessed by comparing them with limited observations, including E from the AmeriFlux data, soil moisture from the Oklahoma Mesonet and the Illinois State Water Survey, and streamflow data from the U.S. Geological Survey (USGS). The CFSR has positive precipitation (P) biases over the western mountains, the Pacific Northwest, and the Ohio River valley in winter and spring. In summer, it has positive biases over the Southeast and large negative biases over the Great Plains. These errors limit the ability to use the standardized precipitation indices (SPIs) derived from the CFSR to measure the severity of meteorological droughts. To compare with the P analyses, the Heidke score for the 6-month SPI derived from the CFSR is on average about 0.5 for the three-category classification of drought, floods, and neutral months. The CFSR has positive E biases in spring because of positive biases in downward solar radiation and high potential evaporation. The negative E biases over the Great Plains in summer are due to less P and soil moisture in the root zone. The correlations of soil moisture percentile between the CFSR and the ensemble NLDAS are regionally dependent. The correlations are higher over the area east of 100°W and the West Coast. There is less agreement between them over the western interior region.

Full access
Youlong Xia
,
Michael B. Ek
,
Yihua Wu
,
Trent Ford
, and
Steven M. Quiring

Abstract

In this second part of a two-part paper, the impacts of soil texture and vegetation type misclassification and their combined effect on soil moisture, evapotranspiration, and total runoff simulation are investigated using the Noah model. The results show that these impacts are significant for most regions and soil layers, although they vary depending on soil texture classification, vegetation type, and season. The use of site-observed soil texture classification and vegetation type in the model does not necessarily improve anomaly correlations and reduce mean absolute error for soil moisture simulations. Instead, results are mixed when examining all regions and soil layers. This is attributed to the compensation effects (e.g., effect of ill-calibrated model parameters), as Noah has been more or less calibrated with model-specified soil texture classification and vegetation type. The site-based analysis shows that Noah can reasonably simulate the variation of daily evapotranspiration, soil moisture, and total runoff when soil texture classification (vegetation type) is corrected from loam (forest) to clay (grasslands) or vice versa. This suggests that the performance of Noah can be further improved by tuning model parameters when site-observed soil texture and vegetation type are used.

Full access
Youlong Xia
,
Trent W. Ford
,
Yihua Wu
,
Steven M. Quiring
, and
Michael B. Ek

Abstract

The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models, and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states, as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable because of the diversity of climatological conditions, land cover, soil texture, and topographies of the stations, and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy, and imprecision in the data can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure that the data are of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System, phase 2 (NLDAS-2), Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20-cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and west Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1200 NASMD stations in the near future.

Full access