Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Michael J. Herman x
  • All content x
Clear All Modify Search
Željka Fuchs, Michael J. Herman, and David J. Raymond

Abstract

Cross-isobaric flow and Ekman pumping are investigated in the frictional spindown of an initially barotropic vortex in a stratified atmosphere. Consistent with early work by Holton and others, it is found that the stratification limits the vertical penetration of the secondary circulation driven by friction, resulting in more rapid spindown than in the unstratified case. As a result, the cross-isobaric flow and Ekman pumping are weaker and shallower than classical calculations ignoring the stratification would lead one to believe. The effect of stability becomes stronger as the vortex becomes smaller for fixed boundary layer depth. For weak geostrophic vortices with horizontal scales of several hundred kilometers or less, such as tropical easterly waves, the reduction is particularly pronounced, which raises questions about the efficacy of Ekman pumping in forcing convection in such vortices. These results suggest a revised conceptual model for the role of Ekman pumping in the atmosphere. The theory as it stands is limited to weak, linear vortices in which geostrophic balance holds approximately, corresponding to small Rossby number, though extensions of the analytical theory to stronger vortices may be possible.

Full access
Michael J. Herman, Zeljka Fuchs, David J. Raymond, and Peter Bechtold

Abstract

The authors analyze composite structures of tropical convectively coupled Kelvin waves (CCKWs) in terms of the theory of Raymond and Fuchs using radiosonde data, 3D analysis and reanalysis model output, and annual integrations with the ECMWF model on the full planet and on an aquaplanet. Precipitation anomalies are estimated using the NOAA interpolated OLR and TRMM 3B42 datasets, as well as using model OLR and rainfall diagnostics. Derived variables from these datasets are used to examine assumptions of the theory. Large-scale characteristics of wave phenomena are robust in all datasets and models where Kelvin wave variance is large. Indices from the theory representing column moisture and convective inhibition are also robust. The results suggest that the CCKW is highly dependent on convective inhibition, while column moisture does not play an important role.

Full access
Michael J. Erickson, Joshua S. Kastman, Benjamin Albright, Sarah Perfater, James A. Nelson, Russ S. Schumacher, and Gregory R. Herman

Abstract

The Flash Flood and Intense Rainfall (FFaIR) Experiment developed within the Hydrometeorology Testbed (HMT) of the Weather Prediction Center (WPC) is a pseudo-operational platform for participants from across the weather enterprise to test emerging flash flood forecasting tools and issue experimental forecast products. This study presents the objective verification portion of the 2017 edition of the experiment, which examines the performance from a variety of guidance tools (deterministic models, ensembles, and machine-learning techniques) and the participants’ forecasts, with occasional reference to the participants’ subjective ratings. The skill of the model guidance used in the FFaIR Experiment is evaluated using performance diagrams verified against the Stage IV analysis. The operational and FFaIR Experiment versions of the excessive rainfall outlook (ERO) are evaluated by assessing the frequency of issuances, probabilistic calibration, Brier skill score (BSS), and area under relative operating characteristic (AuROC). An ERO first-guess field called the Colorado State University Machine-Learning Probabilities method (CSU-MLP) is also evaluated in the FFaIR Experiment. Among convection-allowing models, the Met Office Unified Model generally performed optimally throughout the FFaIR Experiment when using performance diagrams (at the 0.5- and 1-in. thresholds; 1 in. = 25.4 mm), whereas the High-Resolution Rapid Refresh (HRRR), version 3, performed best subjectively. In terms of subjective and objective ensemble scores, the HRRR ensemble scored optimally. The CSU-MLP overpredicted lower risk categories and underpredicted higher risk categories, but it shows future promise as an ERO first-guess field. The EROs issued by the FFaIR Experiment forecasters had improved BSS and AuROC relative to the operational ERO, suggesting that the experimental guidance may have aided forecasters.

Free access
Jhoon Kim, Ukkyo Jeong, Myoung-Hwan Ahn, Jae H. Kim, Rokjin J. Park, Hanlim Lee, Chul Han Song, Yong-Sang Choi, Kwon-Ho Lee, Jung-Moon Yoo, Myeong-Jae Jeong, Seon Ki Park, Kwang-Mog Lee, Chang-Keun Song, Sang-Woo Kim, Young Joon Kim, Si-Wan Kim, Mijin Kim, Sujung Go, Xiong Liu, Kelly Chance, Christopher Chan Miller, Jay Al-Saadi, Ben Veihelmann, Pawan K. Bhartia, Omar Torres, Gonzalo González Abad, David P. Haffner, Dai Ho Ko, Seung Hoon Lee, Jung-Hun Woo, Heesung Chong, Sang Seo Park, Dennis Nicks, Won Jun Choi, Kyung-Jung Moon, Ara Cho, Jongmin Yoon, Sang-kyun Kim, Hyunkee Hong, Kyunghwa Lee, Hana Lee, Seoyoung Lee, Myungje Choi, Pepijn Veefkind, Pieternel F. Levelt, David P. Edwards, Mina Kang, Mijin Eo, Juseon Bak, Kanghyun Baek, Hyeong-Ahn Kwon, Jiwon Yang, Junsung Park, Kyung Man Han, Bo-Ram Kim, Hee-Woo Shin, Haklim Choi, Ebony Lee, Jihyo Chong, Yesol Cha, Ja-Ho Koo, Hitoshi Irie, Sachiko Hayashida, Yasko Kasai, Yugo Kanaya, Cheng Liu, Jintai Lin, James H. Crawford, Gregory R. Carmichael, Michael J. Newchurch, Barry L. Lefer, Jay R. Herman, Robert J. Swap, Alexis K. H. Lau, Thomas P. Kurosu, Glen Jaross, Berit Ahlers, Marcel Dobber, C. Thomas McElroy, and Yunsoo Choi

Abstract

The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a geostationary Earth orbit (GEO) for the first time. With the development of UV–visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO, and aerosols) can be obtained. To date, all the UV–visible satellite missions monitoring air quality have been in low Earth orbit (LEO), allowing one to two observations per day. With UV–visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be on board the Geostationary Korea Multi-Purpose Satellite 2 (GEO-KOMPSAT-2) satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager 2 (GOCI-2). These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) and ESA’s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS).

Free access