Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Michael J. Mineter x
  • Refine by Access: All Content x
Clear All Modify Search
Simon F. B. Tett, Daniel J. Rowlands, Michael J. Mineter, and Coralia Cartis

Abstract

A large number of perturbed-physics simulations of version 3 of the Hadley Centre Atmosphere Model (HadAM3) were compared with the Clouds and the Earth's Radiant Energy System (CERES) estimates of outgoing longwave radiation (OLR) and reflected shortwave radiation (RSR) as well as OLR and RSR from the earlier Earth Radiation Budget Experiment (ERBE) estimates. The model configurations were produced from several independent optimization experiments in which four parameters were adjusted. Model–observation uncertainty was estimated by combining uncertainty arising from satellite measurements, observational radiation imbalance, total solar irradiance, radiative forcing, natural aerosol, internal climate variability, and sea surface temperature and that arising from parameters that were not varied. Using an emulator built from 14 001 “slab” model evaluations carried out using the climateprediction.net ensemble, the climate sensitivity for each configuration was estimated. Combining different prior probabilities for model configurations with the likelihood for each configuration and taking account of uncertainty in the emulated climate sensitivity gives, for the HadAM3 model, a 2.5%–97.5% range for climate sensitivity of 2.7–4.2 K if the CERES observations are correct. If the ERBE observations are correct, then they suggest a larger range, for HadAM3, of 2.8–5.6 K. Amplifying the CERES observational covariance estimate by a factor of 20 brings CERES and ERBE estimates into agreement. In this case the climate sensitivity range is 2.7–5.4 K. The results rule out, at the 2.5% level for HadAM3 and several different prior assumptions, climate sensitivities greater than 5.6 K.

Full access
Simon F. B. Tett, Michael J. Mineter, Coralia Cartis, Daniel J. Rowlands, and Ping Liu

Abstract

Perturbed physics configurations of version 3 of the Hadley Centre Atmosphere Model (HadAM3) driven with observed sea surface temperatures (SST) and sea ice were tuned to outgoing radiation observations using a Gauss–Newton line search optimization algorithm to adjust the model parameters. Four key parameters that previous research found affected climate sensitivity were adjusted to several different target values including two sets of observations. The observations used were the global average reflected shortwave radiation (RSR) and outgoing longwave radiation (OLR) from the Clouds and the Earth's Radiant Energy System instruments combined with observations of ocean heat content. Using the same method, configurations were also generated that were consistent with the earlier Earth Radiation Budget Experiment results. Many, though not all, tuning experiments were successful, with about 2500 configurations being generated and the changes in simulated outgoing radiation largely due to changes in clouds. Clear-sky radiation changes were small, largely due to a cancellation between changes in upper-tropospheric relative humidity and temperature. Changes in other climate variables are strongly related to changes in OLR and RSR particularly on large scales. There appears to be some equifinality with different parameter configurations producing OLR and RSR values close to observed values. These models have small differences in their climatology with the one group being similar to the standard configuration and the other group drier in the tropics and warmer everywhere.

Full access
Simon F. B. Tett, Alexander Falk, Megan Rogers, Fiona Spuler, Calum Turner, Joshua Wainwright, Oscar Dimdore-Miles, Sam Knight, Nicolas Freychet, Michael J. Mineter, and Caroline E. R. Lehmann
Open access