Search Results
You are looking at 1 - 7 of 7 items for
- Author or Editor: Michael J. Uddstrom x
- Refine by Access: All Content x
Abstract
The paper describes the results of an experiment where, for a series of flights, Philips RS4 and Väisälä RS80 radiosondes were mounted on the same balloon. It is shown that there are both random and systematic differences in the raw and derived data generated from these systems. At all levels above 1000 hPa, solar corrected RS4 temperature soundings are colder than those of the RS8O; resulting in a geopotential height difference of the order of 90 m at 50 hPa. The Väisälä RS8O Omega winds are similar to radar-derived wind profiles except in regions of changing vertical shear.
Abstract
The paper describes the results of an experiment where, for a series of flights, Philips RS4 and Väisälä RS80 radiosondes were mounted on the same balloon. It is shown that there are both random and systematic differences in the raw and derived data generated from these systems. At all levels above 1000 hPa, solar corrected RS4 temperature soundings are colder than those of the RS8O; resulting in a geopotential height difference of the order of 90 m at 50 hPa. The Väisälä RS8O Omega winds are similar to radar-derived wind profiles except in regions of changing vertical shear.
Abstract
The retrieval of vertical profiles of temperature and water vapor from atmospheric radiances is an ill-posed, nonlinear inversion problem. A linear retrieval estimator must be cast in a form which both minimizes the effects of unmodeled nonlinear processes, and provides retrieval constraints that are pertinent to the sounded atmospheres.
Here, the ill-posed aspect of the problem is resolved by defining a set of meteorologically reasonable retrieval estimator constraints through typical shape function (TSF) classification of a large sample of radiosonde observations. The companion problem of discriminating the TSF constraints to be applied to a particular retrieval estimator, given a set of observed radiances, is investigated. Since the particular linear model chosen to represent the radiance measurements will also have some impact on the retrieval estimator, the effects of errors arising from both simple and simultaneous linearization models for the radiative transfer equation are examined. A TSF constrained, simultaneous, maximum a posteriori retrieval estimator is formulated. Also, a classified, single field-of-view, cloud detection and clear radiance estimator is developed for overcast soundings.
The fundamental properties of the new retrieval estimator are examined and specified via synthetic TOVS radiance data experiments. The retrieval algorithm is also applied to two successive NOAA-7 passes over the New Zealand region, and the retrievals compared with those from a regression retrieval scheme, and operational NWP analysis fields.
Abstract
The retrieval of vertical profiles of temperature and water vapor from atmospheric radiances is an ill-posed, nonlinear inversion problem. A linear retrieval estimator must be cast in a form which both minimizes the effects of unmodeled nonlinear processes, and provides retrieval constraints that are pertinent to the sounded atmospheres.
Here, the ill-posed aspect of the problem is resolved by defining a set of meteorologically reasonable retrieval estimator constraints through typical shape function (TSF) classification of a large sample of radiosonde observations. The companion problem of discriminating the TSF constraints to be applied to a particular retrieval estimator, given a set of observed radiances, is investigated. Since the particular linear model chosen to represent the radiance measurements will also have some impact on the retrieval estimator, the effects of errors arising from both simple and simultaneous linearization models for the radiative transfer equation are examined. A TSF constrained, simultaneous, maximum a posteriori retrieval estimator is formulated. Also, a classified, single field-of-view, cloud detection and clear radiance estimator is developed for overcast soundings.
The fundamental properties of the new retrieval estimator are examined and specified via synthetic TOVS radiance data experiments. The retrieval algorithm is also applied to two successive NOAA-7 passes over the New Zealand region, and the retrievals compared with those from a regression retrieval scheme, and operational NWP analysis fields.
Abstract
Twelve months of Southern Hemisphere (maritime) midlatitudes Advanced Very High Resolution Radiometer local area coverage data at full radiometric and spatial resolution have been collocated with rain-rate data from three Doppler weather radars.
Using an interactive computing environment, large independent samples of cloudy-altocumulus, cumulonimbus, cirrostratus, cumulus, nimbostratus, stratocumulus, stratus-and cloud-free scenes have been identified (labeled) in the collocated data. Accurate labeling was ensured by providing a supervising-analyst access to appropriate diagnostics, including difference and ratio channels, 3.7-µm reflected and emissive components, spectral histograms, Coakley-Bretherton spatial coherence plots, mean, standard deviation, and gray-level difference (GLD) statistics. This analysis yielded 4323 cloud and no-cloud samples at a spatial resolution of 8 × 8 instantaneous fields of view (IFOV), from 257 NOAA-11 and NOAA-12 orbits.
Bayesian cloud discriminant functions calculated from the labeled samples and utilizing feature vectors including radiometric and GLD spatial characteristics successfully classified scenes into one of the seven cloud and no-cloud classes with significant skill (Kuipers’ performance index 0.63). Utilizing the posterior probability of the classified samples enabled some clouds that were classified erroneously to be identified (and discarded), improving the skill of the discriminant functions by an additional 10% or so. Removing the GLD statistics from the feature vector reduced the skill of the cloud discrimination by about 20% (relative to the nondiscarding discriminant function), while increasing the misclassification of midlevel clouds. However, some cloud classes can only be discriminated from their multispectral signatures. Day and night discriminant functions show similar skill.
Within raining cloud classes, rain rate has been related to the spatial and radiometric characteristics of the cloud. The skill of the rain-rate estimates is dependent on the cloud type. For nimbostratus and altocumulus classes 20%25% of the rain-rate variation can be explained by predictors that measure the temperature, spatial texture, and degree of isotropy in the sampled clouds. Raining and nonraining samples of altocumulus, cumulus, cirrostratus, and nimbostratus can be delineated with at least 60% accuracy.
This approach, whereby cloud classes are identified then rain rates estimated as a function of cloud type, would seem to resolve some of the usual problems associated with rain-rate analyses from midlatitudes infrared and visible satellite data. It also extends rain-rate diagnosis to nonconvective (frontal) cloud systems.
Abstract
Twelve months of Southern Hemisphere (maritime) midlatitudes Advanced Very High Resolution Radiometer local area coverage data at full radiometric and spatial resolution have been collocated with rain-rate data from three Doppler weather radars.
Using an interactive computing environment, large independent samples of cloudy-altocumulus, cumulonimbus, cirrostratus, cumulus, nimbostratus, stratocumulus, stratus-and cloud-free scenes have been identified (labeled) in the collocated data. Accurate labeling was ensured by providing a supervising-analyst access to appropriate diagnostics, including difference and ratio channels, 3.7-µm reflected and emissive components, spectral histograms, Coakley-Bretherton spatial coherence plots, mean, standard deviation, and gray-level difference (GLD) statistics. This analysis yielded 4323 cloud and no-cloud samples at a spatial resolution of 8 × 8 instantaneous fields of view (IFOV), from 257 NOAA-11 and NOAA-12 orbits.
Bayesian cloud discriminant functions calculated from the labeled samples and utilizing feature vectors including radiometric and GLD spatial characteristics successfully classified scenes into one of the seven cloud and no-cloud classes with significant skill (Kuipers’ performance index 0.63). Utilizing the posterior probability of the classified samples enabled some clouds that were classified erroneously to be identified (and discarded), improving the skill of the discriminant functions by an additional 10% or so. Removing the GLD statistics from the feature vector reduced the skill of the cloud discrimination by about 20% (relative to the nondiscarding discriminant function), while increasing the misclassification of midlevel clouds. However, some cloud classes can only be discriminated from their multispectral signatures. Day and night discriminant functions show similar skill.
Within raining cloud classes, rain rate has been related to the spatial and radiometric characteristics of the cloud. The skill of the rain-rate estimates is dependent on the cloud type. For nimbostratus and altocumulus classes 20%25% of the rain-rate variation can be explained by predictors that measure the temperature, spatial texture, and degree of isotropy in the sampled clouds. Raining and nonraining samples of altocumulus, cumulus, cirrostratus, and nimbostratus can be delineated with at least 60% accuracy.
This approach, whereby cloud classes are identified then rain rates estimated as a function of cloud type, would seem to resolve some of the usual problems associated with rain-rate analyses from midlatitudes infrared and visible satellite data. It also extends rain-rate diagnosis to nonconvective (frontal) cloud systems.
Abstract
This paper reports on the first application of a multispectral textural Bayesian cloud classification algorithm (“SRTex”) to the general problem of the determination of high–spatial resolution cloud-amount and cloud-type climatological distributions. One year of NOAA-14 daylight passes over a region of complex topography (the South Island of New Zealand and adjacent ocean areas) is analyzed, and exploratory cloud-amount and -type climatological distributions are developed. When validated against a set of surface observations, the cloud-amount distributions have no significant bias at seasonal and yearly timescales, and explain between 70% (seasonal) and 90% (annual) of the spatial variance in the surface observations.
The cloud-amount distributions show strong land/sea contrasts. Lowest cloud frequencies are found in the lee of the major alpine feature in the analysis domain (the Southern Alps) and over mountain-sheltered valleys and adjacent sea areas. Over the oceans, cloud frequencies are highest over sub-Antarctic water masses, and range from 90% to 95%. However, over the sea adjacent to the coast on the western side of the Southern Alps, there is a distinct minimum in cloud amount that appears to be related to the orography.
The cloud-type climatological distributions are analyzed in terms of both simple frequency of occurrence and conditional frequency of occurrence, which is the frequency of occurrence as a fraction of the total number of times that the cloud type could have been observed. These distributions reveal the presence of preferred locations for some cloud types. There is strong evidence that uplift over major mountain ranges is a source of transmissive cirrus (enhancing occurrence by a factor of 2) and that the resulting cirrus coverage is most extensive and frequent in spring. Over the ocean areas, SST-related effects may determine the spatial distributions of stratocumulus, with higher frequencies observed over sub-Antarctic waters than over subtropical waters. Also, there is a positive correlation between mean cloud-top height and SST, but no similar relationship is found for other cloud types.
Abstract
This paper reports on the first application of a multispectral textural Bayesian cloud classification algorithm (“SRTex”) to the general problem of the determination of high–spatial resolution cloud-amount and cloud-type climatological distributions. One year of NOAA-14 daylight passes over a region of complex topography (the South Island of New Zealand and adjacent ocean areas) is analyzed, and exploratory cloud-amount and -type climatological distributions are developed. When validated against a set of surface observations, the cloud-amount distributions have no significant bias at seasonal and yearly timescales, and explain between 70% (seasonal) and 90% (annual) of the spatial variance in the surface observations.
The cloud-amount distributions show strong land/sea contrasts. Lowest cloud frequencies are found in the lee of the major alpine feature in the analysis domain (the Southern Alps) and over mountain-sheltered valleys and adjacent sea areas. Over the oceans, cloud frequencies are highest over sub-Antarctic water masses, and range from 90% to 95%. However, over the sea adjacent to the coast on the western side of the Southern Alps, there is a distinct minimum in cloud amount that appears to be related to the orography.
The cloud-type climatological distributions are analyzed in terms of both simple frequency of occurrence and conditional frequency of occurrence, which is the frequency of occurrence as a fraction of the total number of times that the cloud type could have been observed. These distributions reveal the presence of preferred locations for some cloud types. There is strong evidence that uplift over major mountain ranges is a source of transmissive cirrus (enhancing occurrence by a factor of 2) and that the resulting cirrus coverage is most extensive and frequent in spring. Over the ocean areas, SST-related effects may determine the spatial distributions of stratocumulus, with higher frequencies observed over sub-Antarctic waters than over subtropical waters. Also, there is a positive correlation between mean cloud-top height and SST, but no similar relationship is found for other cloud types.
Abstract
Bayesian methods are used to develop a cloud mask classification algorithm for use in an operational sea surface temperature (SST) retrieval processing system for Advanced Very High Resolution Radiometer (AVHRR) local area coverage (LAC) resolution data. Both radiative and spatial features are incorporated in the resulting discriminant functions, which are determined from a large training sample of cloudy and clear observations. This approach obviates the need to specify the arbitrary thresholds used by hierarchical cloud-clearing methods, provides an estimate of the probability that an instantaneous field of view is cloudy (clear), and allows the skill of different cloud discriminant models to be objectively analyzed.
Results show that spatial information is of particular importance in reducing the false alarm rate of the cloudy class. However, while the use of complex textural measures such as gray-level difference statistics—as opposed to simple statistics such as the standard deviation—improves the skill of nighttime cloud-masking algorithms, they are of little advantage during daytime hours.
Cloud mask discriminant models having similar high Kuipers’ performance index scores (i.e., 0.935) are developed for both day and night satellite data from the Southern Hemisphere midlatitudes. Applied to LAC orbital (i.e., operational) data, the characteristics of the cloud masks appear to be similar to those derived from analysis of the training sample data. However, in this case, to enhance processing performance, a hybrid algorithm is employed—obviously cloudy instantaneous fields of view (IFOVs) are first removed via a gross threshold check and the Bayesian method applied only to the remaining IFOVs. This same (hybrid) algorithm is also applied to an ensemble of 30 days of AVHRR LAC data from the New Zealand region. Analysis of the resulting time-composited SST data (means and standard deviations) shows there is little evidence of a day–night bias in the performance of the Bayesian cloud-masking algorithm and that the resulting SST data may be used to determine the variability of oceanographic features.
Although this paper uses AVHRR data to demonstrate the principles of the Bayesian cloud-masking algorithm, there is no reason why the approach could not be used with other instruments.
Abstract
Bayesian methods are used to develop a cloud mask classification algorithm for use in an operational sea surface temperature (SST) retrieval processing system for Advanced Very High Resolution Radiometer (AVHRR) local area coverage (LAC) resolution data. Both radiative and spatial features are incorporated in the resulting discriminant functions, which are determined from a large training sample of cloudy and clear observations. This approach obviates the need to specify the arbitrary thresholds used by hierarchical cloud-clearing methods, provides an estimate of the probability that an instantaneous field of view is cloudy (clear), and allows the skill of different cloud discriminant models to be objectively analyzed.
Results show that spatial information is of particular importance in reducing the false alarm rate of the cloudy class. However, while the use of complex textural measures such as gray-level difference statistics—as opposed to simple statistics such as the standard deviation—improves the skill of nighttime cloud-masking algorithms, they are of little advantage during daytime hours.
Cloud mask discriminant models having similar high Kuipers’ performance index scores (i.e., 0.935) are developed for both day and night satellite data from the Southern Hemisphere midlatitudes. Applied to LAC orbital (i.e., operational) data, the characteristics of the cloud masks appear to be similar to those derived from analysis of the training sample data. However, in this case, to enhance processing performance, a hybrid algorithm is employed—obviously cloudy instantaneous fields of view (IFOVs) are first removed via a gross threshold check and the Bayesian method applied only to the remaining IFOVs. This same (hybrid) algorithm is also applied to an ensemble of 30 days of AVHRR LAC data from the New Zealand region. Analysis of the resulting time-composited SST data (means and standard deviations) shows there is little evidence of a day–night bias in the performance of the Bayesian cloud-masking algorithm and that the resulting SST data may be used to determine the variability of oceanographic features.
Although this paper uses AVHRR data to demonstrate the principles of the Bayesian cloud-masking algorithm, there is no reason why the approach could not be used with other instruments.
Abstract
During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) project in June and July 2014, the Gulfstream V research aircraft flew 97 legs over the Southern Alps of New Zealand and 150 legs over the Tasman Sea and Southern Ocean, mostly in the low stratosphere at 12.1-km altitude. Improved instrument calibration, redundant sensors, longer flight legs, energy flux estimation, and scale analysis revealed several new gravity wave properties. Over the sea, flight-level wave fluxes mostly fell below the detection threshold. Over terrain, disturbances had characteristic mountain wave attributes of positive vertical energy flux (EF z ), negative zonal momentum flux, and upwind horizontal energy flux. In some cases, the fluxes changed rapidly within an 8-h flight, even though environmental conditions were nearly unchanged. The largest observed zonal momentum and vertical energy fluxes were MF x = −550 mPa and EF z = 22 W m−2, respectively.
A wide variety of disturbance scales were found at flight level over New Zealand. The vertical wind variance at flight level was dominated by short “fluxless” waves with wavelengths in the 6–15-km range. Even shorter scales, down to 500 m, were found in wave breaking regions. The wavelength of the flux-carrying mountain waves was much longer—mostly between 60 and 150 km. In the strong cases, however, with EF z > 4 W m−2, the dominant flux wavelength decreased (i.e., “downshifted”) to an intermediate wavelength between 20 and 60 km. A potential explanation for the rapid flux changes and the scale “downshifting” is that low-level flow can shift between “terrain following” and “envelope following” associated with trapped air in steep New Zealand valleys.
Abstract
During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) project in June and July 2014, the Gulfstream V research aircraft flew 97 legs over the Southern Alps of New Zealand and 150 legs over the Tasman Sea and Southern Ocean, mostly in the low stratosphere at 12.1-km altitude. Improved instrument calibration, redundant sensors, longer flight legs, energy flux estimation, and scale analysis revealed several new gravity wave properties. Over the sea, flight-level wave fluxes mostly fell below the detection threshold. Over terrain, disturbances had characteristic mountain wave attributes of positive vertical energy flux (EF z ), negative zonal momentum flux, and upwind horizontal energy flux. In some cases, the fluxes changed rapidly within an 8-h flight, even though environmental conditions were nearly unchanged. The largest observed zonal momentum and vertical energy fluxes were MF x = −550 mPa and EF z = 22 W m−2, respectively.
A wide variety of disturbance scales were found at flight level over New Zealand. The vertical wind variance at flight level was dominated by short “fluxless” waves with wavelengths in the 6–15-km range. Even shorter scales, down to 500 m, were found in wave breaking regions. The wavelength of the flux-carrying mountain waves was much longer—mostly between 60 and 150 km. In the strong cases, however, with EF z > 4 W m−2, the dominant flux wavelength decreased (i.e., “downshifted”) to an intermediate wavelength between 20 and 60 km. A potential explanation for the rapid flux changes and the scale “downshifting” is that low-level flow can shift between “terrain following” and “envelope following” associated with trapped air in steep New Zealand valleys.
Abstract
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes.
Abstract
The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was designed to quantify gravity wave (GW) dynamics and effects from orographic and other sources to regions of dissipation at high altitudes. The core DEEPWAVE field phase took place from May through July 2014 using a comprehensive suite of airborne and ground-based instruments providing measurements from Earth’s surface to ∼100 km. Austral winter was chosen to observe deep GW propagation to high altitudes. DEEPWAVE was based on South Island, New Zealand, to provide access to the New Zealand and Tasmanian “hotspots” of GW activity and additional GW sources over the Southern Ocean and Tasman Sea. To observe GWs up to ∼100 km, DEEPWAVE utilized three new instruments built specifically for the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV): a Rayleigh lidar, a sodium resonance lidar, and an advanced mesosphere temperature mapper. These measurements were supplemented by in situ probes, dropsondes, and a microwave temperature profiler on the GV and by in situ probes and a Doppler lidar aboard the German DLR Falcon. Extensive ground-based instrumentation and radiosondes were deployed on South Island, Tasmania, and Southern Ocean islands. Deep orographic GWs were a primary target but multiple flights also observed deep GWs arising from deep convection, jet streams, and frontal systems. Highlights include the following: 1) strong orographic GW forcing accompanying strong cross-mountain flows, 2) strong high-altitude responses even when orographic forcing was weak, 3) large-scale GWs at high altitudes arising from jet stream sources, and 4) significant flight-level energy fluxes and often very large momentum fluxes at high altitudes.