Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Michael P. Byrne x
  • All content x
Clear All Modify Search
Michael P. Byrne and Tapio Schneider

Abstract

The intertropical convergence zone (ITCZ) has been the focus of considerable research in recent years, with much of this work concerned with how the latitude of maximum tropical precipitation responds to natural climate variability and to radiative forcing. The width of the ITCZ, however, has received little attention despite its importance for regional climate and for understanding the general circulation of the atmosphere. This paper investigates the ITCZ width in simulations with an idealized general circulation model over a wide range of climates. The ITCZ, defined as the tropical region where there is time-mean ascent, displays rich behavior as the climate varies, widening with warming in cool climates, narrowing in temperate climates, and maintaining a relatively constant width in hot climates. The mass and energy budgets of the Hadley circulation are used to derive expressions for the area of the ITCZ relative to the area of the neighboring descent region, and for the sensitivity of the ITCZ area to changes in climate. The ITCZ width depends primarily on four quantities: the net energy input to the tropical atmosphere, the advection of moist static energy by the Hadley circulation, the transport of moist static energy by transient eddies, and the gross moist stability. Different processes are important for the ITCZ width in different climates, with changes in gross moist stability generally having a weak influence relative to the other processes. The results are likely to be useful for analyzing the ITCZ width in complex climate models and for understanding past and future climate change in the tropics.

Full access
Michael P. Byrne and Tapio Schneider

Abstract

The regional climate response to radiative forcing is largely controlled by changes in the atmospheric circulation. It has been suggested that global climate sensitivity also depends on the circulation response, an effect called the “atmospheric dynamics feedback.” Using a technique to isolate the influence of changes in atmospheric circulation on top-of-the-atmosphere radiation, the authors calculate the atmospheric dynamics feedback in coupled climate models. Large-scale circulation changes contribute substantially to all-sky and cloud feedbacks in the tropics but are relatively less important at higher latitudes. Globally averaged, the atmospheric dynamics feedback is positive and amplifies the near-surface temperature response to climate change by an average of 8% in simulations with coupled models. A constraint related to the atmospheric mass budget results in the dynamics feedback being small on large scales relative to feedbacks associated with thermodynamic processes. Idealized-forcing simulations suggest that circulation changes at high latitudes are potentially more effective at influencing global temperature than circulation changes at low latitudes, and the implications for past and future climate change are discussed.

Full access
Michael P. Byrne and Rhidian Thomas

Abstract

The dynamical processes controlling the width of the intertropical convergence zone (ITCZ) are investigated using idealized and CMIP5 simulations. ITCZ width is defined in terms of boundary layer vertical velocity. The tropical boundary layer is approximately in Ekman balance, suggesting that wind stress places a strong constraint on ITCZ width. A scaling based on Ekman balance predicts that ITCZ width is proportional to the wind stress and inversely proportional to its meridional gradient. A toy model of an Ekman boundary layer illustrates the effects of wind stress perturbations on ITCZ width. A westerly wind perturbation widens the ITCZ whereas an easterly perturbation narrows the ITCZ. Multiplying the wind stress by a constant factor does not shift the ITCZ edge, but ITCZ width is sensitive to the latitude of maximum wind stress. Scalings based on Ekman balance cannot fully capture the behavior of ITCZ width across simulations, suggesting that non-Ekman dynamical processes need to be accounted for. An alternative scaling based on the full momentum budget explains variations in ITCZ width and highlights the importance of horizontal and vertical momentum advection. Scalings are also introduced linking ITCZ width to surface temperature. An extension to Lindzen–Nigam theory predicts that ITCZ width scales with the latitude where the Laplacian of SST is zero. The supercriticality theory of Emanuel is also invoked to show that ITCZ width is dynamically linked to boundary layer moist entropy gradients. The results establish a dynamical understanding of ITCZ width that can be applied to interpret persistent ITCZ biases in climate models and the response of tropical precipitation to climate change.

Open access
Michael P. Byrne and Laure Zanna

Abstract

Monsoons are summertime circulations shaping climates and societies across the tropics and subtropics. Here the radiative effects controlling an axisymmetric monsoon and its response to climate change are investigated using aquaplanet simulations. The influences of clouds, water vapor, and CO2 on the axisymmetric monsoon are decomposed using the radiation-locking technique. Seasonal variations in clouds and water vapor strongly modulate the axisymmetric monsoon, reducing net precipitation by approximately half. Warming and moistening of the axisymmetric monsoon by seasonal longwave cloud and water vapor effects are counteracted by a strong shortwave cloud effect. The shortwave cloud effect also expedites onset of the axisymmetric monsoon by approximately two weeks, whereas longwave cloud and water vapor effects delay onset. A conceptual model relates the timing of monsoon onset to the efficiency of surface cooling. In climate change simulations CO2 forcing and the water vapor feedback have similar influences on the axisymmetric monsoon, warming the surface and moistening the region. In contrast, clouds have a negligible effect on surface temperature yet dominate the monsoon circulation response. A new perspective for understanding how cloud radiative effects shape the monsoon circulation response to climate change is introduced. The radiation-locking simulations and analyses advance understanding of how radiative processes influence an axisymmetric monsoon, and establish a framework for interpreting monsoon–radiation coupling in observations, in state-of-the-art models, and in different climate states.

Restricted access
Michael P. Byrne and Paul A. O’Gorman

Abstract

Climate models simulate a strong land–ocean contrast in the response of near-surface relative humidity to global warming; relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving atmospheric moisture transport between the land and ocean and surface evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to simulations with idealized and full-complexity (CMIP5) general circulation models, and it is found to capture many of the features of the simulated changes in land humidity. The simplest version of the box model gives equal fractional increases in specific humidity over land and ocean. This relationship implies a decrease in land relative humidity given the greater warming over land than ocean and modest changes in ocean relative humidity, consistent with a mechanism proposed previously. When evapotranspiration is included, it is found to be of secondary importance compared to ocean moisture transport for the increase in land specific humidity, but it plays an important role for the decrease in land relative humidity. For the case of a moisture forcing over land, such as from stomatal closure, the response of land relative humidity is strongly amplified by the induced change in land surface–air temperature, and this amplification is quantified using a theory for the link between land and ocean temperatures.

Full access
Michael P. Byrne and Paul A. O’Gorman

Abstract

Surface temperatures increase at a greater rate over land than ocean in simulations and observations of global warming. It has previously been proposed that this land–ocean warming contrast is related to different changes in lapse rates over land and ocean because of limited moisture availability over land. A simple theory of the land–ocean warming contrast is developed here in which lapse rates are determined by an assumption of convective quasi-equilibrium. The theory predicts that the difference between land and ocean temperatures increases monotonically as the climate warms or as the land becomes more arid. However, the ratio of differential warming over land and ocean varies nonmonotonically with temperature for constant relative humidities and reaches a maximum at roughly 290 K.

The theory is applied to simulations with an idealized general circulation model in which the continental configuration and climate are varied systematically. The simulated warming contrast is confined to latitudes below 50° when climate is varied by changes in longwave optical thickness. The warming contrast depends on land aridity and is larger for zonal land bands than for continents with finite zonal extent. A land–ocean temperature contrast may be induced at higher latitudes by enforcing an arid land surface, but its magnitude is relatively small. The warming contrast is generally well described by the theory, although inclusion of a land–ocean albedo contrast causes the theory to overestimate the land temperatures. Extensions of the theory are discussed to include the effect of large-scale eddies on the extratropical thermal stratification and to account for warming contrasts in both surface air and surface skin temperatures.

Full access
Michael P. Byrne and Paul A. O’Gorman

Abstract

Simulations with climate models show a land–ocean contrast in the response of PE (precipitation minus evaporation or evapotranspiration) to global warming, with larger changes over ocean than over land. The changes over ocean broadly follow a simple thermodynamic scaling of the atmospheric moisture convergence: the so-called “wet-get-wetter, dry-get-drier” mechanism. Over land, however, the simple scaling fails to give any regions with decreases in PE, and it overestimates increases in PE compared to the simulations. Changes in circulation cause deviations from the simple scaling, but they are not sufficient to explain this systematic moist bias. It is shown here that horizontal gradients of changes in temperature and fractional changes in relative humidity, not accounted for in the simple scaling, are important over land and high-latitude oceans. An extended scaling that incorporates these gradients is shown to better capture the response of PE over land, including a smaller increase in global-mean runoff and several regions with decreases in PE. In the zonal mean over land, the gradient terms lead to a robust drying tendency at almost all latitudes. This drying tendency is shown to relate, in part, to the polar amplification of warming in the Northern Hemisphere, and to the amplified warming over continental interiors and on the eastern side of midlatitude continents.

Full access
Bin Wang, Michela Biasutti, Michael P. Byrne, Christopher Castro, Chih-Pei Chang, Kerry Cook, Rong Fu, Alice M. Grimm, Kyung-Ja Ha, Harry Hendon, Akio Kitoh, R. Krishnan, June-Yi Lee, Jianping Li, Jian Liu, Aurel Moise, Salvatore Pascale, M. K. Roxy, Anji Seth, Chung-Hsiung Sui, Andrew Turner, Song Yang, Kyung-Sook Yun, Lixia Zhang, and Tianjun Zhou

Abstract

Monsoon rainfall has profound economic and societal impacts for more than two-thirds of the global population. Here we provide a review on past monsoon changes and their primary drivers, the projected future changes, and key physical processes, and discuss challenges of the present and future modeling and outlooks. Continued global warming and urbanization over the past century has already caused a significant rise in the intensity and frequency of extreme rainfall events in all monsoon regions (high confidence). Observed changes in the mean monsoon rainfall vary by region with significant decadal variations. Northern Hemisphere land monsoon rainfall as a whole declined from 1950 to 1980 and rebounded after the 1980s, due to the competing influences of internal climate variability and radiative forcing from greenhouse gases and aerosol forcing (high confidence); however, it remains a challenge to quantify their relative contributions. The CMIP6 models simulate better global monsoon intensity and precipitation over CMIP5 models, but common biases and large intermodal spreads persist. Nevertheless, there is high confidence that the frequency and intensity of monsoon extreme rainfall events will increase, alongside an increasing risk of drought over some regions. Also, land monsoon rainfall will increase in South Asia and East Asia (high confidence) and northern Africa (medium confidence), decrease in North America, and be unchanged in the Southern Hemisphere. Over the Asian–Australian monsoon region, the rainfall variability is projected to increase on daily to decadal scales. The rainy season will likely be lengthened in the Northern Hemisphere due to late retreat (especially over East Asia), but shortened in the Southern Hemisphere due to delayed onset.

Full access