Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Michael Sigmond x
  • Refine by Access: All Content x
Clear All Modify Search
Michael Sigmond and John C. Fyfe

Abstract

It has been suggested that the increase of Southern Hemisphere sea ice extent since the 1970s can be explained by ozone depletion in the Southern Hemisphere stratosphere. In a previous study, the authors have shown that in a coupled atmosphere–ocean–sea ice model the ozone hole does not lead to an increase but to a decrease in sea ice extent. Here, the robustness of this result is established through the analysis of models from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). Comparison of the mean sea ice trends in CMIP3 models with and without time-varying stratospheric ozone suggests that ozone depletion is associated with decreased sea ice extent, and ozone recovery acts to mitigate the future sea ice decrease associated with increasing greenhouse gases. All available historical simulations with CMIP5 models that were designed to isolate the effect of time-varying ozone concentrations show decreased sea ice extent in response to historical ozone trends. In most models, the historical sea ice extent trends are mainly driven by historical greenhouse gas forcing, with ozone forcing playing a secondary role.

Full access
Michael Sigmond and John F. Scinocca

Abstract

Employing a comprehensive atmospheric general circulation model, the authors have shown in a previous study that the time-mean Northern Hemisphere (NH) winter circulation response to a CO2 doubling perturbation depends significantly on parameterized orographic gravity wave drag (OGWD) parameter settings, which are essentially related to the strength of OGWD. A possible implication is that aspects of the greenhouse gas–induced circulation response could depend directly on the formulation and internal parameters settings of the OGWD scheme. Such a result would further heighten the importance of OGWD parameterizations for climate studies and have far-reaching implications for modeled projections of future climate change.

In this study the causal relationship between OGWD and changes in time-mean NH wintertime circulation response to CO2 doubling is investigated. This is accomplished by introducing a methodology that allows one to hold the OGWD forcing fixed to its 1 × CO2 value when CO2 is doubled. Employing this methodology for perturbation experiments with different strengths of OGWD, the authors find that the changes in OGWD forcing due to CO2 doubling have essentially no impact on the time-mean zonal-mean zonal wind response. The primary conclusion is that the OGWD influence is limited to its impact on the 1 × CO2 basic-state climatology, which defines the propagation characteristics of resolved waves. Different strengths of OGWD result in control basic states with different refractive properties for the resolved waves. It is shown that the action of resolved waves, as well as their sensitivity to such differences in the control climatology, explains essentially all of the NH wintertime circulation sensitivity identified here and in a previous study. Implications for climate change projections and climate-model development are discussed.

Full access
Michael Sigmond and Theodore G. Shepherd

Abstract

Following recent findings, the interaction between resolved (Rossby) wave drag and parameterized orographic gravity wave drag (OGWD) is investigated, in terms of their driving of the Brewer–Dobson circulation (BDC), in a comprehensive climate model. To this end, the parameter that effectively determines the strength of OGWD in present-day and doubled CO2 simulations is varied. The authors focus on the Northern Hemisphere during winter when the largest response of the BDC to climate change is predicted to occur. It is found that increases in OGWD are to a remarkable degree compensated by a reduction in midlatitude resolved wave drag, thereby reducing the impact of changes in OGWD on the BDC. This compensation is also found for the response to climate change: changes in the OGWD contribution to the BDC response to climate change are compensated by opposite changes in the resolved wave drag contribution to the BDC response to climate change, thereby reducing the impact of changes in OGWD on the BDC response to climate change. By contrast, compensation does not occur at northern high latitudes, where resolved wave driving and the associated downwelling increase with increasing OGWD, both for the present-day climate and the response to climate change. These findings raise confidence in the credibility of climate model projections of the strengthened BDC.

Full access
Isla R. Simpson, Theodore G. Shepherd, and Michael Sigmond

Abstract

A robust feature of the observed response to El Niño–Southern Oscillation (ENSO) is an altered circulation in the lower stratosphere. When sea surface temperatures (SSTs) in the tropical Pacific are warmer there is enhanced upwelling and cooling in the tropical lower stratosphere and downwelling and warming in the midlatitudes, while the opposite is true of cooler SSTs. The midlatitude lower stratospheric response to ENSO is larger in the Southern Hemisphere (SH) than in the Northern Hemisphere (NH).

In this study the dynamical version of the Canadian Middle Atmosphere Model (CMAM) is used to simulate 25 realizations of the atmospheric response to the 1982/83 El Niño and the 1973/74 La Niña. This version of CMAM is a comprehensive high-top general circulation model that does not include interactive chemistry. The observed lower stratospheric response to ENSO is well reproduced by the simulations, allowing them to be used to investigate the mechanisms involved. Both the observed and simulated responses maximize in December–March and so this study focuses on understanding the mechanisms involved in that season.

The response in tropical upwelling is predominantly driven by anomalous transient synoptic-scale wave drag in the SH subtropical lower stratosphere, which is also responsible for the compensating SH midlatitude response. This altered wave drag stems from an altered upward flux of wave activity from the troposphere into the lower stratosphere between 20° and 40°S. The altered flux of wave activity can be divided into two distinct components. In the Pacific, the acceleration of the zonal wind in the subtropics from the warmer tropical SSTs results in a region between the midlatitude and subtropical jets where there is an enhanced source of low phase speed eddies. At other longitudes, an equatorward shift of the midlatitude jet from the extratropical tropospheric response to El Niño results in an enhanced source of waves of higher phase speeds in the subtropics. The altered resolved wave drag is only apparent in the SH and the difference between the two hemispheres can be related to the difference in the climatological jet structures in this season and the projection of the wind anomalies associated with ENSO onto those structures.

Full access
Toni Mitovski, Ian Folkins, Knut von Salzen, and Michael Sigmond

Abstract

Radiosonde measurements and Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall are used to construct composite anomaly patterns of temperature, relative humidity, and divergence about high rainfall events in the western Pacific. The observed anomaly patterns are compared with anomaly patterns from four general circulation models [Third and Fourth Generation Atmospheric General Circulation Model (AGCM3 and AGCM4), Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1), and European Center Hamburg Model version 5 (ECHAM5)] and two reanalysis products [40-yr ECMWF Re-Analysis (ERA-40) and ERA-Interim]. In general, the models and reanalyses do not fully represent the timing, strength, or altitude of the midlevel congestus divergence that precedes peak rainfall or the midlevel stratiform convergence that occurs after peak rainfall. The surface cold pools that develop in response to high rainfall events are also either not present or somewhat weaker than observations. Surface cold pools originate from the downward transport within mesoscale downdrafts of midtropospheric air with low moist static energy into the boundary layer. Differences between the modeled and observed response to high rainfall events suggest that the convective parameterizations used by the models and reanalyses discussed here may underrepresent the strength of the mesoscale downdraft circulation.

Full access
Lantao Sun, Clara Deser, Isla Simpson, and Michael Sigmond

Abstract

Arctic sea ice has declined rapidly over the past four decades and climate models project a seasonally ice-free Arctic Ocean by the middle of this century, with attendant consequences for regional climate. However, modeling studies lack consensus on how the large-scale atmospheric circulation will respond to Arctic sea ice loss. In this study, the authors conduct a series of 200-member ensemble experiments with the Community Atmosphere Model version 6 (CAM6) to isolate the atmospheric response to past and future sea ice loss following the Polar Amplification Model Intercomparison Project (PAMIP) protocol. They find that the stratospheric polar vortex response is small compared to internal variability, which in turn influences the signal-to-noise ratio of the wintertime tropospheric circulation response to ice loss. In particular, a strong (weak) stratospheric polar vortex induces a positive (negative) tropospheric northern annular mode (and North Atlantic Oscillation), obscuring the forced component of the tropospheric response, even in 100-member averages. Stratospheric internal variability is closely tied to upward wave propagation from the troposphere and can be explained by linear wave interference between the anomalous and climatological planetary waves. Implications for the detection of recent observed trends and model realism are also presented. These results highlight the inherent uncertainty of the large-scale tropospheric circulation response to Arctic sea ice loss arising from stratospheric internal variability.

Restricted access
Arlan Dirkson, Bertrand Denis, Michael Sigmond, and William J. Merryfield

Abstract

Dynamical forecasting systems are being used to skillfully predict deterministic ice-free and freeze-up date events in the Arctic. This paper extends such forecasts to a probabilistic framework and tests two calibration models to correct systematic biases and improve the statistical reliability of the event dates: trend-adjusted quantile mapping (TAQM) and nonhomogeneous censored Gaussian regression (NCGR). TAQM is a probability distribution mapping method that corrects the forecast for climatological biases, whereas NCGR relates the calibrated parametric forecast distribution to the raw ensemble forecast through a regression model framework. For NCGR, the observed event trend and ensemble-mean event date are used to predict the central tendency of the predictive distribution. For modeling forecast uncertainty, we find that the ensemble-mean event date, which is related to forecast lead time, performs better than the ensemble variance itself. Using a multidecadal hindcast record from the Canadian Seasonal to Interannual Prediction System (CanSIPS), TAQM and NCGR are applied to produce categorical forecasts quantifying the probabilities for early, normal, and late ice retreat and advance. While TAQM performs better than adjusting the raw forecast for mean and linear trend bias, NCGR is shown to outperform TAQM in terms of reliability, skill, and an improved tendency for forecast probabilities to be no worse than climatology. Testing various cross-validation setups, we find that NCGR remains useful when shorter hindcast records (~20 years) are available. By applying NCGR to operational forecasts, stakeholders can be more confident in using seasonal forecasts of sea ice event timing for planning purposes.

Full access
Tiffany A. Shaw, Michael Sigmond, Theodore G. Shepherd, and John F. Scinocca

Abstract

The Canadian Middle Atmosphere Model is used to examine the sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. Momentum conservation requires that the parameterized gravity wave momentum flux at the top of the model be zero and corresponds to the physical boundary condition of no momentum flux at the top of the atmosphere. Allowing momentum flux to escape the model domain violates momentum conservation. Here the impact of momentum conservation in two sets of model simulations is investigated.

In the first set, the simulation of present-day climate for two model-lid height configurations, 0.001 and 10 hPa, which are identical below 10 hPa, is considered. The impact of momentum conservation on the climate with the model lid at 0.001 hPa is minimal, which is expected because of the small amount of gravity wave momentum flux reaching 0.001 hPa. When the lid is lowered to 10 hPa and momentum is conserved, there is only a modest impact on the climate in the Northern Hemisphere; however, the Southern Hemisphere climate is more adversely affected by the deflection of resolved waves near the model lid. When momentum is not conserved in the 10-hPa model the climate is further degraded in both hemispheres, particularly in winter at high latitudes, and the impact of momentum conservation extends all the way to the surface.

In the second set of simulations, the impact of momentum conservation and model-lid height on the modeled response to ozone depletion in the Southern Hemisphere is considered, and it is found that the response can display significant sensitivity to both factors. In particular, both the lower-stratospheric polar temperature and surface responses are significantly altered when the lid is lowered, with the effect being most severe when momentum is not conserved. The implications with regard to the current round of Intergovernmental Panel on Climate Change model projections are discussed.

Full access
Haruki Hirasawa, Paul J. Kushner, Michael Sigmond, John Fyfe, and Clara Deser

Abstract

Sahel precipitation has undergone substantial multidecadal time scale changes during the twentieth century that have had severe impacts on the region’s population. Using initial-condition large ensembles (LE) of coupled general circulation model (GCM) simulations from two institutions, forced multidecadal variability is found in which Sahel precipitation declines from the 1950s to 1970s and then recovers from the 1970s to 2000s. This forced variability has similar timing to, but considerably smaller magnitude than, observed Sahel precipitation variability. Isolating the response using single forcing simulations within the LEs reveals that anthropogenic aerosols (AA) are the primary driver of this forced variability. The roles of the direct-atmospheric and the ocean-mediated atmospheric responses to AA forcing are determined with the atmosphere–land GCM (AGCM) components of the LE coupled GCMs. The direct-atmospheric response arises from changes to aerosol and precursor emissions with unchanged oceanic boundary conditions while the ocean-mediated response arises from changes to AA-forced sea surface temperatures and sea ice concentrations diagnosed from the AA-forced LE. In the AGCMs studied here, the direct-atmospheric response dominates the AA-forced 1970s − 1950s Sahel drying. On the other hand, the 2000s − 1970s wetting is mainly driven by the ocean-mediated effect, with some direct atmospheric contribution. Although the responses show differences, there is qualitative agreement between the AGCMs regarding the roles of the direct-atmospheric and ocean-mediated responses. Since these effects often compete and show nonlinearity, the model dependence of these effects and their role in the net aerosol-forced response of Sahel precipitation need to be carefully accounted for in future model analysis.

Free access
Haruki Hirasawa, Paul J. Kushner, Michael Sigmond, John Fyfe, and Clara Deser

Abstract

Sahel summertime precipitation declined from the 1950s to 1970s and recovered from the 1970s to 2000s. Anthropogenic aerosol contributions to this evolution are typically attributed to interhemispheric gradient changes of Atlantic Ocean sea surface temperature (SST). However recent work by Hirasawa et al. indicates a more complex picture, with the response being a combination of “fast” direct atmospheric (DA) processes and “slow” ocean-mediated (OM) processes. Here, we extend this understanding using the Community Atmosphere Model 5 to determine the role of regional ocean-basin perturbations and regional aerosol emission changes in the overall aerosol-driven OM and DA responses, respectively. From the 1950s to 1970s, there was an OM Sahel wetting response due to Pacific Ocean cooling that was offset by drying due to Atlantic cooling. By contrast, from the 1970s to 2000s, Atlantic trends reversed and amplified the Pacific cooling-induced wetting. This wetting was partially offset by drying driven by Indian Ocean cooling. Thus, the OM Sahel precipitation response to aerosol crucially depends on the balance of responses to Atlantic, Pacific, and Indian Ocean SST anomalies. From the 1950s to 1970s, there is DA Sahel drying that was principally due to North American aerosol emissions, with negligible effect from European emissions. DA drying from the 1970s to 2000s was mainly due to African aerosol emissions. Thus, the shifting roles of regional OM and DA effects reveal a complex interplay of direct driving and remote teleconnections in determining the time evolution of Sahel precipitation due to aerosol forcing in the late twentieth century.

Significance Statement

Studies of global climate models consistently indicate that anthropogenic aerosol emissions were a significant contributor to a severe drought that occurred in the Sahel region of Africa in the late twentieth century. The drying influence of aerosol forcing is the combined result of rapid atmospheric responses directly due to the forcing and slower responses due to forced ocean temperature changes. Using a set of simulations targeted at determining the influences from different ocean basins and different emission regions for two periods in the late twentieth century, we find there is a surprising range of mechanisms through which aerosol emissions affect the Sahel. This results in a complex interplay of at times competing and at times complementary regional influences.

Open access