Search Results
You are looking at 1 - 10 of 28 items for
- Author or Editor: Ming Pan x
- Refine by Access: All Content x
Abstract
Part I of this series of studies developed procedures to implement the multiscale filtering algorithm for land surface hydrology and performed assimilation experiments with rainfall ensembles from a climate model. However, a most important application of the multiscale technique is to assimilate satellite-based remote sensing observations into a land surface model—and this has not been realized. This paper focuses on enabling the multiscale assimilation system to use remotely sensed precipitation data. The major challenge is the generation of a rainfall ensemble given one satellite rainfall map. An acceptable rainfall ensemble must contain a proper multiscale spatial correlation structure, and each ensemble member presents a realistic rainfall process in both space and time. A pattern-based sampling approach is proposed, in which random samples are drawn from a historical rainfall database according to the pattern of the satellite rainfall and then a cumulative distribution function matching procedure is applied to ensure the proper statistics for the pixel-level rainfall intensity. The assimilation system is applied using Tropical Rainfall Measuring Mission real-time satellite rainfall over the Red–Arkansas River basin. Results show that the ensembles so generated satisfy the requirements for spatial correlation and realism and the multiscale assimilation works reasonably well. A number of limitations also exist in applying this generation method, mainly stemming from the high dimensionality of the problem and the lack of historical records.
Abstract
Part I of this series of studies developed procedures to implement the multiscale filtering algorithm for land surface hydrology and performed assimilation experiments with rainfall ensembles from a climate model. However, a most important application of the multiscale technique is to assimilate satellite-based remote sensing observations into a land surface model—and this has not been realized. This paper focuses on enabling the multiscale assimilation system to use remotely sensed precipitation data. The major challenge is the generation of a rainfall ensemble given one satellite rainfall map. An acceptable rainfall ensemble must contain a proper multiscale spatial correlation structure, and each ensemble member presents a realistic rainfall process in both space and time. A pattern-based sampling approach is proposed, in which random samples are drawn from a historical rainfall database according to the pattern of the satellite rainfall and then a cumulative distribution function matching procedure is applied to ensure the proper statistics for the pixel-level rainfall intensity. The assimilation system is applied using Tropical Rainfall Measuring Mission real-time satellite rainfall over the Red–Arkansas River basin. Results show that the ensembles so generated satisfy the requirements for spatial correlation and realism and the multiscale assimilation works reasonably well. A number of limitations also exist in applying this generation method, mainly stemming from the high dimensionality of the problem and the lack of historical records.
Abstract
A procedure is developed to incorporate equality constraints in Kalman filters, including the ensemble Kalman filter (EnKF), and is referred to as the constrained ensemble Kalman filter (CEnKF). The constraint is carried out as a two-step filtering approach, with the first step being the standard (ensemble) Kalman filter. The second step is the constraint step carried out by another Kalman filter that optimally redistributes any imbalance from the first step. The CEnKF is implemented over a 75 000 km2 domain in the southern Great Plains region of the United States, using the terrestrial water balance as the constraint. The observations, consisting of gridded fields of the upper two soil moisture layers from the Oklahoma Mesonet system, Atmospheric Radiation Measurement Program Cloud and Radiation Testbed (ARM-CART) energy balance Bowen ratio (EBBR) latent heat estimates, and U.S. Geological Survey (USGS) streamflow from unregulated basins, are assimilated into the Variable Infiltration Capacity (VIC) land surface model. The water balance was applied at the domain scale, and estimates of the water balance components for the domain are updated from the data assimilation step so as to assure closure.
Abstract
A procedure is developed to incorporate equality constraints in Kalman filters, including the ensemble Kalman filter (EnKF), and is referred to as the constrained ensemble Kalman filter (CEnKF). The constraint is carried out as a two-step filtering approach, with the first step being the standard (ensemble) Kalman filter. The second step is the constraint step carried out by another Kalman filter that optimally redistributes any imbalance from the first step. The CEnKF is implemented over a 75 000 km2 domain in the southern Great Plains region of the United States, using the terrestrial water balance as the constraint. The observations, consisting of gridded fields of the upper two soil moisture layers from the Oklahoma Mesonet system, Atmospheric Radiation Measurement Program Cloud and Radiation Testbed (ARM-CART) energy balance Bowen ratio (EBBR) latent heat estimates, and U.S. Geological Survey (USGS) streamflow from unregulated basins, are assimilated into the Variable Infiltration Capacity (VIC) land surface model. The water balance was applied at the domain scale, and estimates of the water balance components for the domain are updated from the data assimilation step so as to assure closure.
Abstract
In this study, a new set of reflectivity equations are introduced into the Advanced Regional Prediction System (ARPS) cloud analysis system. This set of equations incorporates double-moment microphysics information in the analysis by adopting a set of diagnostic relationships between the intercept parameters and the corresponding mass mixing ratios. A reflectivity- and temperature-based graupel classification scheme is also implemented according to a hydrometeor identification (HID) diagram. A squall line that occurred on 23 April 2007 over southern China containing a pronounced trailing stratiform precipitation region is used as a test case to evaluate the impacts of the enhanced cloud analysis scheme.
The results show that using the enhanced cloud analysis scheme is able to better capture the characteristics of the squall line in the forecast. The predicted squall line exhibits a wider stratiform region and a more clearly defined transition zone between the leading convection and the trailing stratiform precipitation region agreeing better with observations in general, when using the enhanced cloud analysis together with the two-moment microphysics scheme. The quantitative precipitation forecast skill score is also improved.
Abstract
In this study, a new set of reflectivity equations are introduced into the Advanced Regional Prediction System (ARPS) cloud analysis system. This set of equations incorporates double-moment microphysics information in the analysis by adopting a set of diagnostic relationships between the intercept parameters and the corresponding mass mixing ratios. A reflectivity- and temperature-based graupel classification scheme is also implemented according to a hydrometeor identification (HID) diagram. A squall line that occurred on 23 April 2007 over southern China containing a pronounced trailing stratiform precipitation region is used as a test case to evaluate the impacts of the enhanced cloud analysis scheme.
The results show that using the enhanced cloud analysis scheme is able to better capture the characteristics of the squall line in the forecast. The predicted squall line exhibits a wider stratiform region and a more clearly defined transition zone between the leading convection and the trailing stratiform precipitation region agreeing better with observations in general, when using the enhanced cloud analysis together with the two-moment microphysics scheme. The quantitative precipitation forecast skill score is also improved.
Abstract
Land surface water and energy fluxes from the ensemble mean of the Atmospheric Model Intercomparison Project (AMIP) simulations of a Geophysical Fluid Dynamics Laboratory (GFDL) high-resolution climate model (AM2.5) were evaluated using offline simulations of a calibrated land surface model [Princeton Global Forcing (PGF)/VIC] and intercompared with three reanalysis datasets: MERRA-Land, ERA-Interim/Land, and CFSR. Using PGF/VIC as the reference, the AM2.5 precipitation, evapotranspiration, and runoff showed a global positive bias of ~0.44, ~0.27, and ~0.15 mm day−1, respectively. For the energy budget, while the AM2.5 net radiation agreed very well with the PGF/VIC, the AM2.5 improperly partitioned the net radiation, with the latent heat showing positive bias and sensible heat showing negative bias. The AM2.5 net radiation, latent heat, and sensible heat relative to the PGF/VIC had a global negative bias of ~1.42 W m−2, positive bias of ~7.8 W m−2, and negative bias of ~8.7 W m−2, respectively. The three reanalyses show greater biases in net radiation, likely due to the deficiencies in cloud parameterizations. At a regional scale, the biases of the AM2.5 water and energy budget components are mostly comparable to the three reanalyses and PGF/VIC. While the AM2.5 well simulated the actual values of water and energy fluxes, the temporal anomaly correlations of the three reanalyses with PGF/VIC were mostly greater than the AM2.5, partly due to the ensemble mean of the AM2.5 members averaging out the intrinsic variability of the land surface fluxes. The discrepancies among land surface model simulations, reanalyses, and high-resolution climate model simulations demonstrate the challenges in estimating and evaluating land surface hydrologic fluxes at regional-to-global scales.
Abstract
Land surface water and energy fluxes from the ensemble mean of the Atmospheric Model Intercomparison Project (AMIP) simulations of a Geophysical Fluid Dynamics Laboratory (GFDL) high-resolution climate model (AM2.5) were evaluated using offline simulations of a calibrated land surface model [Princeton Global Forcing (PGF)/VIC] and intercompared with three reanalysis datasets: MERRA-Land, ERA-Interim/Land, and CFSR. Using PGF/VIC as the reference, the AM2.5 precipitation, evapotranspiration, and runoff showed a global positive bias of ~0.44, ~0.27, and ~0.15 mm day−1, respectively. For the energy budget, while the AM2.5 net radiation agreed very well with the PGF/VIC, the AM2.5 improperly partitioned the net radiation, with the latent heat showing positive bias and sensible heat showing negative bias. The AM2.5 net radiation, latent heat, and sensible heat relative to the PGF/VIC had a global negative bias of ~1.42 W m−2, positive bias of ~7.8 W m−2, and negative bias of ~8.7 W m−2, respectively. The three reanalyses show greater biases in net radiation, likely due to the deficiencies in cloud parameterizations. At a regional scale, the biases of the AM2.5 water and energy budget components are mostly comparable to the three reanalyses and PGF/VIC. While the AM2.5 well simulated the actual values of water and energy fluxes, the temporal anomaly correlations of the three reanalyses with PGF/VIC were mostly greater than the AM2.5, partly due to the ensemble mean of the AM2.5 members averaging out the intrinsic variability of the land surface fluxes. The discrepancies among land surface model simulations, reanalyses, and high-resolution climate model simulations demonstrate the challenges in estimating and evaluating land surface hydrologic fluxes at regional-to-global scales.
Abstract
There is a long history of debate on the usefulness of climate model–based seasonal hydroclimatic forecasts as compared to ensemble streamflow prediction (ESP). In this study, the authors use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2), and its previous version, CFSv1, to investigate the value of climate models by conducting a set of 27-yr seasonal hydroclimatic hindcasts over the conterminous United States (CONUS). Through Bayesian downscaling, climate models have higher squared correlation R 2 and smaller error than ESP for monthly precipitation, and the forecasts conditional on ENSO have further improvements over southern basins out to 4 months. Verification of streamflow forecasts over 1734 U.S. Geological Survey (USGS) gauges shows that CFSv2 has moderately smaller error than ESP, but all three approaches have limited added skill against climatology beyond 1 month because of overforecasting or underdispersion errors. Using a postprocessor, 60%–70% of probabilistic streamflow forecasts are more skillful than climatology. All three approaches have plausible predictions of soil moisture drought frequency over the central United States out to 6 months, and climate models provide better results over the central and eastern United States. The R 2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R 2 of drought severity accumulated over CONUS is higher during winter, and climate models present added value, especially at long leads. This study indicates that climate models can provide better seasonal hydroclimatic forecasts than ESP through appropriate downscaling procedures, but significant improvements are dependent on the variables, seasons, and regions.
Abstract
There is a long history of debate on the usefulness of climate model–based seasonal hydroclimatic forecasts as compared to ensemble streamflow prediction (ESP). In this study, the authors use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2), and its previous version, CFSv1, to investigate the value of climate models by conducting a set of 27-yr seasonal hydroclimatic hindcasts over the conterminous United States (CONUS). Through Bayesian downscaling, climate models have higher squared correlation R 2 and smaller error than ESP for monthly precipitation, and the forecasts conditional on ENSO have further improvements over southern basins out to 4 months. Verification of streamflow forecasts over 1734 U.S. Geological Survey (USGS) gauges shows that CFSv2 has moderately smaller error than ESP, but all three approaches have limited added skill against climatology beyond 1 month because of overforecasting or underdispersion errors. Using a postprocessor, 60%–70% of probabilistic streamflow forecasts are more skillful than climatology. All three approaches have plausible predictions of soil moisture drought frequency over the central United States out to 6 months, and climate models provide better results over the central and eastern United States. The R 2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R 2 of drought severity accumulated over CONUS is higher during winter, and climate models present added value, especially at long leads. This study indicates that climate models can provide better seasonal hydroclimatic forecasts than ESP through appropriate downscaling procedures, but significant improvements are dependent on the variables, seasons, and regions.
Abstract
A long-term consistent and comprehensive dataset of land surface hydrologic fluxes and states will greatly benefit the analysis of land surface variables, their changes and interactions, and the assessment of land–atmosphere parameterizations for climate models. While some offline model studies can provide balanced water and energy budgets at land surface, few of them have presented an evaluation of the long-term interaction of water balance components over China. Here, a consistent and comprehensive land surface hydrologic fluxes and states dataset for China using the Variable Infiltration Capacity (VIC) hydrologic model driven by long-term gridded observation-based meteorological forcings is developed. The hydrologic dataset covers China with a 0.25° spatial resolution and a 3-hourly time step for 1952–2012. In the dataset, the simulated streamflow matches well with the observed monthly streamflow at the large river basins in China. Given the water balance scheme in the VIC model, the overall success at runoff simulations suggests that the long-term mean evapotranspiration is also realistically estimated. The simulated soil moisture generally reproduces the seasonal variation of the observed soil moisture at the ground stations where long-term observations are available. The modeled snow cover patterns and monthly dynamics bear an overall resemblance to the Northern Hemisphere snow cover extent data from the National Snow and Ice Data Center. Compared with global product of a similar nature, the dataset can provide a more reliable estimate of land surface variables over China. The dataset, which will be publicly available via the Internet, may be useful for hydroclimatological studies in China.
Abstract
A long-term consistent and comprehensive dataset of land surface hydrologic fluxes and states will greatly benefit the analysis of land surface variables, their changes and interactions, and the assessment of land–atmosphere parameterizations for climate models. While some offline model studies can provide balanced water and energy budgets at land surface, few of them have presented an evaluation of the long-term interaction of water balance components over China. Here, a consistent and comprehensive land surface hydrologic fluxes and states dataset for China using the Variable Infiltration Capacity (VIC) hydrologic model driven by long-term gridded observation-based meteorological forcings is developed. The hydrologic dataset covers China with a 0.25° spatial resolution and a 3-hourly time step for 1952–2012. In the dataset, the simulated streamflow matches well with the observed monthly streamflow at the large river basins in China. Given the water balance scheme in the VIC model, the overall success at runoff simulations suggests that the long-term mean evapotranspiration is also realistically estimated. The simulated soil moisture generally reproduces the seasonal variation of the observed soil moisture at the ground stations where long-term observations are available. The modeled snow cover patterns and monthly dynamics bear an overall resemblance to the Northern Hemisphere snow cover extent data from the National Snow and Ice Data Center. Compared with global product of a similar nature, the dataset can provide a more reliable estimate of land surface variables over China. The dataset, which will be publicly available via the Internet, may be useful for hydroclimatological studies in China.
Abstract
Land surface temperature (LST) is a critical state variable for surface energy exchanges as it is one of the controls on emitted radiation at Earth’s surface. LST also exerts an important control on turbulent fluxes through the temperature gradient between LST and air temperature. Although observations of surface energy balance components are widely accessible from in situ stations in most developed regions, these ground-based observations are not available in many underdeveloped regions. Satellite remote sensing measurements provide wider spatial coverage to derive LST over land and are used in this study to form a high-resolution, long-term LST data product. As selected by the Global Energy and Water Exchanges project (GEWEX) Data and Assessments Panel (GDAP) for development of internally consistent datasets, the High Resolution Infrared Radiation Sounder (HIRS) data are used for the primary satellite observations because of the data record length. The final HIRS-consistent, hourly, global, 0.5° resolution LST dataset for clear and cloudy conditions from 1979 to 2009 is developed through merging the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) LST estimates with the HIRS retrievals using a Bayesian postprocessing procedure. The Baseline Surface Radiation Network (BSRN) observations are used to validate the HIRS retrievals, the CFSR LST estimates, and the final merged LST dataset. An intercomparison between the original retrievals and CFSR LST datasets, before and after merging, is also presented with an analysis of the datasets, including an error assessment of the final LST dataset.
Abstract
Land surface temperature (LST) is a critical state variable for surface energy exchanges as it is one of the controls on emitted radiation at Earth’s surface. LST also exerts an important control on turbulent fluxes through the temperature gradient between LST and air temperature. Although observations of surface energy balance components are widely accessible from in situ stations in most developed regions, these ground-based observations are not available in many underdeveloped regions. Satellite remote sensing measurements provide wider spatial coverage to derive LST over land and are used in this study to form a high-resolution, long-term LST data product. As selected by the Global Energy and Water Exchanges project (GEWEX) Data and Assessments Panel (GDAP) for development of internally consistent datasets, the High Resolution Infrared Radiation Sounder (HIRS) data are used for the primary satellite observations because of the data record length. The final HIRS-consistent, hourly, global, 0.5° resolution LST dataset for clear and cloudy conditions from 1979 to 2009 is developed through merging the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) LST estimates with the HIRS retrievals using a Bayesian postprocessing procedure. The Baseline Surface Radiation Network (BSRN) observations are used to validate the HIRS retrievals, the CFSR LST estimates, and the final merged LST dataset. An intercomparison between the original retrievals and CFSR LST datasets, before and after merging, is also presented with an analysis of the datasets, including an error assessment of the final LST dataset.
Abstract
A regional ensemble Kalman filter (EnKF) system is established for potential Rapid Refresh (RAP) operational application. The system borrows data processing and observation operators from the gridpoint statistical interpolation (GSI), and precalculates observation priors using the GSI. The ensemble square root Kalman filter (EnSRF) algorithm is used, which updates both the state vector and observation priors. All conventional observations that are used in the operational RAP GSI are assimilated. To minimize computational costs, the EnKF is run at ⅓ of the operational RAP resolution or about 40-km grid spacing, and its performance is compared to the GSI using the same datasets and resolution. Short-range (up to 18 h, the RAP forecast length) forecasts are verified against soundings, surface observations, and precipitation data. Experiments are run with 3-hourly assimilation cycles over a 9-day convectively active retrospective period from spring 2010. The EnKF performance was improved by extensive tuning, including the use of height-dependent covariance localization scales and adaptive covariance inflation. When multiple physics parameterization schemes are employed by the EnKF, forecast errors are further reduced, especially for relative humidity and temperature at the upper levels and for surface variables. The best EnKF configuration produces lower forecast errors than the parallel GSI run. Gilbert skill scores of precipitation forecasts on the 13-km RAP grid initialized from the 3-hourly EnKF analyses are consistently better than those from GSI analyses.
Abstract
A regional ensemble Kalman filter (EnKF) system is established for potential Rapid Refresh (RAP) operational application. The system borrows data processing and observation operators from the gridpoint statistical interpolation (GSI), and precalculates observation priors using the GSI. The ensemble square root Kalman filter (EnSRF) algorithm is used, which updates both the state vector and observation priors. All conventional observations that are used in the operational RAP GSI are assimilated. To minimize computational costs, the EnKF is run at ⅓ of the operational RAP resolution or about 40-km grid spacing, and its performance is compared to the GSI using the same datasets and resolution. Short-range (up to 18 h, the RAP forecast length) forecasts are verified against soundings, surface observations, and precipitation data. Experiments are run with 3-hourly assimilation cycles over a 9-day convectively active retrospective period from spring 2010. The EnKF performance was improved by extensive tuning, including the use of height-dependent covariance localization scales and adaptive covariance inflation. When multiple physics parameterization schemes are employed by the EnKF, forecast errors are further reduced, especially for relative humidity and temperature at the upper levels and for surface variables. The best EnKF configuration produces lower forecast errors than the parallel GSI run. Gilbert skill scores of precipitation forecasts on the 13-km RAP grid initialized from the 3-hourly EnKF analyses are consistently better than those from GSI analyses.
Abstract
A coupled ensemble square root filter–three-dimensional ensemble-variational hybrid (EnSRF–En3DVar) data assimilation (DA) system is developed for the operational Rapid Refresh (RAP) forecasting system. The En3DVar hybrid system employs the extended control variable method, and is built on the NCEP operational gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation (3DVar) framework. It is coupled with an EnSRF system for RAP, which provides ensemble perturbations. Recursive filters (RF) are used to localize ensemble covariance in both horizontal and vertical within the En3DVar. The coupled En3DVar hybrid system is evaluated with 3-h cycles over a 9-day period with active convection. All conventional observations used by operational RAP are included. The En3DVar hybrid system is run at ⅓ of the operational RAP horizontal resolution or about 40-km grid spacing, and its performance is compared to parallel GSI 3DVar and EnSRF runs using the same datasets and resolution. Short-term forecasts initialized from the 3-hourly analyses are verified against sounding and surface observations. When using equally weighted static and ensemble background error covariances and 40 ensemble members, the En3DVar hybrid system outperforms the corresponding GSI 3DVar and EnSRF. When the recursive filter coefficients are tuned to achieve a similar height-dependent localization as in the EnSRF, the En3DVar results using pure ensemble covariance are close to EnSRF. Two-way coupling between EnSRF and En3DVar did not produce noticeable improvement over one-way coupling. Downscaled precipitation forecast skill on the 13-km RAP grid from the En3DVar hybrid is better than those from GSI 3DVar analyses.
Abstract
A coupled ensemble square root filter–three-dimensional ensemble-variational hybrid (EnSRF–En3DVar) data assimilation (DA) system is developed for the operational Rapid Refresh (RAP) forecasting system. The En3DVar hybrid system employs the extended control variable method, and is built on the NCEP operational gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation (3DVar) framework. It is coupled with an EnSRF system for RAP, which provides ensemble perturbations. Recursive filters (RF) are used to localize ensemble covariance in both horizontal and vertical within the En3DVar. The coupled En3DVar hybrid system is evaluated with 3-h cycles over a 9-day period with active convection. All conventional observations used by operational RAP are included. The En3DVar hybrid system is run at ⅓ of the operational RAP horizontal resolution or about 40-km grid spacing, and its performance is compared to parallel GSI 3DVar and EnSRF runs using the same datasets and resolution. Short-term forecasts initialized from the 3-hourly analyses are verified against sounding and surface observations. When using equally weighted static and ensemble background error covariances and 40 ensemble members, the En3DVar hybrid system outperforms the corresponding GSI 3DVar and EnSRF. When the recursive filter coefficients are tuned to achieve a similar height-dependent localization as in the EnSRF, the En3DVar results using pure ensemble covariance are close to EnSRF. Two-way coupling between EnSRF and En3DVar did not produce noticeable improvement over one-way coupling. Downscaled precipitation forecast skill on the 13-km RAP grid from the En3DVar hybrid is better than those from GSI 3DVar analyses.
Abstract
Hydrological forecasts with a high temporal and spatial resolution are required to provide the level of information needed by end users. So far high-resolution multimodel seasonal hydrological forecasts have been unavailable due to 1) lack of availability of high-resolution meteorological seasonal forecasts, requiring temporal and spatial downscaling; 2) a mismatch between the provided seasonal forecast information and the user needs; and 3) lack of consistency between the hydrological model outputs to generate multimodel seasonal hydrological forecasts. As part of the End-to-End Demonstrator for Improved Decision Making in the Water Sector in Europe (EDgE) project commissioned by the Copernicus Climate Change Service (ECMWF), this study provides a unique dataset of seasonal hydrological forecasts derived from four general circulation models [CanCM4, GFDL Forecast-Oriented Low Ocean Resolution version of CM2.5 (GFDL-FLOR), ECMWF Season Forecast System 4 (ECMWF-S4), and Météo-France LFPW] in combination with four hydrological models [mesoscale hydrologic model (mHM), Noah-MP, PCRaster Global Water Balance (PCR-GLOBWB), and VIC]. The forecasts are provided at daily resolution, 6-month lead time, and 5-km spatial resolution over the historical period from 1993 to 2012. Consistency in hydrological model parameterization ensures an increased consistency in the hydrological forecasts. Results show that skillful discharge forecasts can be made throughout Europe up to 3 months in advance, with predictability up to 6 months for northern Europe resulting from the improved predictability of the spring snowmelt. The new system provides an unprecedented ensemble of seasonal hydrological forecasts with significant skill over Europe to support water management. This study highlights the potential advantages of multimodel based forecasting system in providing skillful hydrological forecasts.
Abstract
Hydrological forecasts with a high temporal and spatial resolution are required to provide the level of information needed by end users. So far high-resolution multimodel seasonal hydrological forecasts have been unavailable due to 1) lack of availability of high-resolution meteorological seasonal forecasts, requiring temporal and spatial downscaling; 2) a mismatch between the provided seasonal forecast information and the user needs; and 3) lack of consistency between the hydrological model outputs to generate multimodel seasonal hydrological forecasts. As part of the End-to-End Demonstrator for Improved Decision Making in the Water Sector in Europe (EDgE) project commissioned by the Copernicus Climate Change Service (ECMWF), this study provides a unique dataset of seasonal hydrological forecasts derived from four general circulation models [CanCM4, GFDL Forecast-Oriented Low Ocean Resolution version of CM2.5 (GFDL-FLOR), ECMWF Season Forecast System 4 (ECMWF-S4), and Météo-France LFPW] in combination with four hydrological models [mesoscale hydrologic model (mHM), Noah-MP, PCRaster Global Water Balance (PCR-GLOBWB), and VIC]. The forecasts are provided at daily resolution, 6-month lead time, and 5-km spatial resolution over the historical period from 1993 to 2012. Consistency in hydrological model parameterization ensures an increased consistency in the hydrological forecasts. Results show that skillful discharge forecasts can be made throughout Europe up to 3 months in advance, with predictability up to 6 months for northern Europe resulting from the improved predictability of the spring snowmelt. The new system provides an unprecedented ensemble of seasonal hydrological forecasts with significant skill over Europe to support water management. This study highlights the potential advantages of multimodel based forecasting system in providing skillful hydrological forecasts.