Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Minghong Zhang x
  • All content x
Clear All Modify Search
Minghong Zhang and Yi Huang

Abstract

An analysis method proposed by Huang is improved and used to dissect the radiative forcing in the instantaneous quadrupling CO2 experiment from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Multiple validation tests show that the errors in the forcing estimates are generally within 10%. The results show that quadrupling CO2, on average, induces a global-mean all-sky instantaneous top-of-the-atmosphere forcing of 5.4 W m−2, which is amended by a stratospheric adjustment of 1.9 W m−2 and a tropospheric adjustment of −0.1 W m−2. The resulting fully adjusted radiative forcing has an ensemble mean of 7.2 W m−2 and a substantial intermodel spread (maximum–minimum) of 2.4 W m−2, which results from all the forcing components, especially the instantaneous forcing and tropospheric adjustment. The fidelity of the linear decomposition of the overall radiation variation is improved when forcing is explicitly estimated for each model. A significant contribution by forcing uncertainty to the intermodel spread of the surface temperature projection is verified. The results reaffirm the importance of evaluating the radiative forcing components in climate feedback analyses.

Full access
Minghong Zhang, Shuanglin Li, Jian Lu, and Renguang Wu

Abstract

This study examines the skills in simulating interannual variability of northwestern Pacific (NWP) summer climate in 12 atmospheric general circulation models (AGCMs) attending the Atmospheric Model Intercomparison Project phase 2 (AMIP II). The models show a wide range of skills, among those version 1 of the Hadley Centre Global Atmosphere Model (HadGAM1) showed the highest fidelity and thus may be a better choice for studying East Asian–NWP summer climate. To understand the possible causes for the difference among the models, five models {HadGAM1; ECHAM5; the Geophysical Fluid Dynamics Laboratory Atmosphere Model, version 2.1 (AM2.1); Model for Interdisciplinary Research on Climate 3.2, high-resolution version [MIROC3.2(hires)]; and the fourth-generation National Center for Atmospheric Research Community Atmosphere Model (CAM3)} that have various skill levels, ranging from the highest to the moderate to the minor, were selected for analyses. The simulated teleconnection of NWP summer climate with sea surface temperatures (SSTs) in the tropical Indian and Pacific Oceans was first compared. HadGAM1 reproduces suppressed (intensified) rainfall during El Niño (La Niña) events and captures well the remote connection with the tropical Indian Ocean, while the other models either underestimate [ECHAM5, AM2.1, MIROC3.2(hires)] or fail to reproduce (CAM3) these teleconnections. The Walker cell and diabatic heating were further compared to shed light on the underlying physical mechanisms for the difference. Consistent with the best performance in simulating interannual rainfall, HadGAM1 exhibits the highest-level skill in capturing the observed climatology of the Walker cell and diabatic heating. These results highlight the key roles of the model’s background climatology in the Walker cell and diabatic heating, thus providing important clues to improving the model’s ability.

Full access