Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Miren Vizcaíno x
  • All content x
Clear All Modify Search
Miren Vizcaíno, William H. Lipscomb, William J. Sacks, and Michiel van den Broeke

Abstract

This study presents the first twenty-first-century projections of surface mass balance (SMB) changes for the Greenland Ice Sheet (GIS) with the Community Earth System Model (CESM), which includes a new ice sheet component. For glaciated surfaces, CESM includes a sophisticated calculation of energy fluxes, surface albedo, and snowpack hydrology (melt, percolation, refreezing, etc.). To efficiently resolve the high SMB gradients at the ice sheet margins and provide surface forcing at the scale needed by ice sheet models, the SMB is calculated at multiple elevations and interpolated to a finer 5-km ice sheet grid. During a twenty-first-century simulation driven by representative concentration pathway 8.5 (RCP8.5) forcing, the SMB decreases from 372 ± 100 Gt yr−1 in 1980–99 to −78 ± 143 Gt yr−1 in 2080–99. The 2080–99 near-surface temperatures over the GIS increase by 4.7 K (annual mean) with respect to 1980–99, only 1.3 times the global increase (+3.7 K). Snowfall increases by 18%, while surface melt doubles. The ablation area increases from 9% of the GIS in 1980–99 to 28% in 2080–99. Over the ablation areas, summer downward longwave radiation and turbulent fluxes increase, while incoming shortwave radiation decreases owing to increased cloud cover. The reduction in GIS-averaged July albedo from 0.78 in 1980–99 to 0.75 in 2080–99 increases the absorbed solar radiation in this month by 12%. Summer warming is strongest in the north and east of Greenland owing to reduced sea ice cover. In the ablation area, summer temperature increases are smaller due to frequent periods of surface melt.

Full access
Miren Vizcaíno, William H. Lipscomb, William J. Sacks, Jan H. van Angelen, Bert Wouters, and Michiel R. van den Broeke

Abstract

The modeling of the surface mass balance (SMB) of the Greenland Ice Sheet (GIS) requires high-resolution models in order to capture the observed large gradients in the steep marginal areas. Until now, global climate models have not been considered suitable to model ice sheet SMB owing to model biases and insufficient resolution. This study analyzes the GIS SMB simulated for the period 1850–2005 by the Community Earth System Model (CESM), which includes a new ice sheet component with multiple elevation classes for SMB calculations. The model is evaluated against observational data and output from the regional model Regional Atmospheric Climate Model version 2 (RACMO2). Because of a lack of major climate biases, a sophisticated calculation of snow processes (including surface albedo evolution) and an adequate downscaling technique, CESM is able to realistically simulate GIS surface climate and SMB. CESM SMB agrees reasonably well with in situ data from 475 locations (r = 0.80) and output from RACMO2 (r = 0.79). The simulated mean SMB for 1960–2005 is 359 ± 120 Gt yr−1 in the range of estimates from regional climate models. The simulated seasonal mass variability is comparable with mass observations from the Gravity Recovery and Climate Experiment (GRACE), with synchronous annual maximum (May) and minimum (August–September) and similar amplitudes of the seasonal cycle. CESM is able to simulate the bands of precipitation maxima along the southeast and northwest margins, but absolute precipitation rates are underestimated along the southeastern margin and overestimated in the high interior. The model correctly simulates the major ablation areas. Total refreezing represents 35% of the available liquid water (the sum of rain and melt).

Full access
William H. Lipscomb, Jeremy G. Fyke, Miren Vizcaíno, William J. Sacks, Jon Wolfe, Mariana Vertenstein, Anthony Craig, Erik Kluzek, and David M. Lawrence

Abstract

The Glimmer Community Ice Sheet Model (Glimmer-CISM) has been implemented in the Community Earth System Model (CESM). Glimmer-CISM is forced by a surface mass balance (SMB) computed in multiple elevation classes in the CESM land model and downscaled to the ice sheet grid. Ice sheet evolution is governed by the shallow-ice approximation with thermomechanical coupling and basal sliding. This paper describes and evaluates the initial model implementation for the Greenland Ice Sheet (GIS). The ice sheet model was spun up using the SMB from a coupled CESM simulation with preindustrial forcing. The model's sensitivity to three key ice sheet parameters was explored by running an ensemble of 100 GIS simulations to quasi equilibrium and ranking each simulation based on multiple diagnostics. With reasonable parameter choices, the steady-state GIS geometry is broadly consistent with observations. The simulated ice sheet is too thick and extensive, however, in some marginal regions where the SMB is anomalously positive. The top-ranking simulations were continued using surface forcing from CESM simulations of the twentieth century (1850–2005) and twenty-first century (2005–2100, with RCP8.5 forcing). In these simulations the GIS loses mass, with a resulting global-mean sea level rise of 16 mm during 1850–2005 and 60 mm during 2005–2100. This mass loss is caused mainly by increased ablation near the ice sheet margin, offset by reduced ice discharge to the ocean. Projected sea level rise is sensitive to the initial geometry, showing the importance of realistic geometry in the spun-up ice sheet.

Full access