Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Molly Wieringa x
  • Refine by Access: All Content x
Clear All Modify Search
Jeffrey Anderson
,
Chris Riedel
,
Molly Wieringa
,
Fairuz Ishraque
,
Marlee Smith
, and
Helen Kershaw

Abstract

The uncertainty associated with many observed and modeled quantities of interest in Earth system prediction can be represented by mixed probability distributions that are neither discrete nor continuous. For instance, a forecast probability of precipitation can have a finite probability of zero precipitation, consistent with a discrete distribution. However, nonzero values are not discrete and are represented by a continuous distribution; the same is true for rainfall rate. Other examples include snow depth, sea ice concentration, amount of a tracer or the source rate of a tracer. Some Earth system model parameters may also have discrete or mixed distributions. Most ensemble data assimilation methods do not explicitly consider the possibility of mixed distributions. The Quantile Conserving Ensemble Filtering Framework (Anderson 2022, 2023) is extended to explicitly deal with discrete or mixed distributions. An example is given using bounded normal rank histogram probability distributions applied to observing system simulation experiments in a low-order tracer advection model. Analyses of tracer concentration and tracer source are shown to be improved when using the extended methods. A key feature of the resulting ensembles is that there can be ensemble members with duplicate values. An extension of the rank histogram diagnostic method to deal with potential duplicates shows that the ensemble distributions from the extended assimilation methods are more consistent with the truth.

Restricted access