Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: N. B. Ward x
  • All content x
Clear All Modify Search
R. P. Davies-Jones and N. B. Ward

Abstract

No abstract available.

Full access
G. Reverdin, S. Morisset, H. Bellenger, J. Boutin, N. Martin, P. Blouch, J. Rolland, F. Gaillard, P. Bouruet-Aubertot, and B. Ward

Abstract

This study describes how the hull temperature (Ttop) measurements from multisensor surface velocity program (SVP) drifters can be combined with other measurements to provide quantitative information on near-surface vertical temperature stratification during large daily cycles. First, Ttop is compared to the temperature measured at 17 -cm depth from a float tethered to the SVP drifter. These 2007–12 SVP drifters present a larger daily cycle by 1%–3% for 1°–2°C daily cycle amplitudes, with a maximum difference close to the local noon. The difference could result from flow around the SVP drifter in the presence of temperature stratification in the top 20 cm of the water column but also from a small influence of internal drifter temperature on Ttop. The largest differences were found for small drifters (Technocean) for very large daily cycles, as expected from their shallower measurements. The vertical stratification is estimated by comparing these hull data with the deeper T or conductivity C measurements from Sea-Bird sensors 25 (Pacific Gyre) to 45 cm (MetOcean) below the top temperature sensor. The largest stratification is usually found near local noon and early afternoon. For a daily cycle amplitude of 1°C, these differences with the upper level are in the range of 3%–5% of the daily cycle for the Pacific Gyre drifters and 6%–10% for MetOcean drifters with the largest values occurring when the midday sun elevation is lowest. The relative differences increase for larger daily cycles, and the vertical profiles become less linear. These estimated stratifications are well above the uncertainty on Ttop.

Full access
J. Boutin, Y. Chao, W. E. Asher, T. Delcroix, R. Drucker, K. Drushka, N. Kolodziejczyk, T. Lee, N. Reul, G. Reverdin, J. Schanze, A. Soloviev, L. Yu, J. Anderson, L. Brucker, E. Dinnat, A. Santos-Garcia, W. L. Jones, C. Maes, T. Meissner, W. Tang, N. Vinogradova, and B. Ward

Abstract

Remote sensing of salinity using satellite-mounted microwave radiometers provides new perspectives for studying ocean dynamics and the global hydrological cycle. Calibration and validation of these measurements is challenging because satellite and in situ methods measure salinity differently. Microwave radiometers measure the salinity in the top few centimeters of the ocean, whereas most in situ observations are reported below a depth of a few meters. Additionally, satellites measure salinity as a spatial average over an area of about 100 × 100 km2. In contrast, in situ sensors provide pointwise measurements at the location of the sensor. Thus, the presence of vertical gradients in, and horizontal variability of, sea surface salinity complicates comparison of satellite and in situ measurements. This paper synthesizes present knowledge of the magnitude and the processes that contribute to the formation and evolution of vertical and horizontal variability in near-surface salinity. Rainfall, freshwater plumes, and evaporation can generate vertical gradients of salinity, and in some cases these gradients can be large enough to affect validation of satellite measurements. Similarly, mesoscale to submesoscale processes can lead to horizontal variability that can also affect comparisons of satellite data to in situ data. Comparisons between satellite and in situ salinity measurements must take into account both vertical stratification and horizontal variability.

Full access
Ian M. Brooks, Margaret J. Yelland, Robert C. Upstill-Goddard, Philip D. Nightingale, Steve Archer, Eric d'Asaro, Rachael Beale, Cory Beatty, Byron Blomquist, A. Anthony Bloom, Barbara J. Brooks, John Cluderay, David Coles, John Dacey, Michael Degrandpre, Jo Dixon, William M. Drennan, Joseph Gabriele, Laura Goldson, Nick Hardman-Mountford, Martin K. Hill, Matt Horn, Ping-Chang Hsueh, Barry Huebert, Gerrit De Leeuw, Timothy G. Leighton, Malcolm Liddicoat, Justin J. N. Lingard, Craig Mcneil, James B. Mcquaid, Ben I. Moat, Gerald Moore, Craig Neill, Sarah J. Norris, Simon O'Doherty, Robin W. Pascal, John Prytherch, Mike Rebozo, Erik Sahlee, Matt Salter, Ute Schuster, Ingunn Skjelvan, Hans Slagter, Michael H. Smith, Paul D. Smith, Meric Srokosz, John A. Stephens, Peter K. Taylor, Maciej Telszewski, Roisin Walsh, Brian Ward, David K. Woolf, Dickon Young, and Henk Zemmelink

Abstract

No Abstract available.

Full access
Ian M. Brooks, Margaret J. Yelland, Robert C. Upstill-Goddard, Philip D. Nightingale, Steve Archer, Eric d'Asaro, Rachael Beale, Cory Beatty, Byron Blomquist, A. Anthony Bloom, Barbara J. Brooks, John Cluderay, David Coles, John Dacey, Michael DeGrandpre, Jo Dixon, William M. Drennan, Joseph Gabriele, Laura Goldson, Nick Hardman-Mountford, Martin K. Hill, Matt Horn, Ping-Chang Hsueh, Barry Huebert, Gerrit de Leeuw, Timothy G. Leighton, Malcolm Liddicoat, Justin J. N. Lingard, Craig McNeil, James B. McQuaid, Ben I. Moat, Gerald Moore, Craig Neill, Sarah J. Norris, Simon O'Doherty, Robin W. Pascal, John Prytherch, Mike Rebozo, Erik Sahlee, Matt Salter, Ute Schuster, Ingunn Skjelvan, Hans Slagter, Michael H. Smith, Paul D. Smith, Meric Srokosz, John A. Stephens, Peter K. Taylor, Maciej Telszewski, Roisin Walsh, Brian Ward, David K. Woolf, Dickon Young, and Henk Zemmelink

As part of the U.K. contribution to the international Surface Ocean-Lower Atmosphere Study, a series of three related projects—DOGEE, SEASAW, and HiWASE—undertook experimental studies of the processes controlling the physical exchange of gases and sea spray aerosol at the sea surface. The studies share a common goal: to reduce the high degree of uncertainty in current parameterization schemes. The wide variety of measurements made during the studies, which incorporated tracer and surfactant release experiments, included direct eddy correlation fluxes, detailed wave spectra, wind history, photographic retrievals of whitecap fraction, aerosolsize spectra and composition, surfactant concentration, and bubble populations in the ocean mixed layer. Measurements were made during three cruises in the northeast Atlantic on the RRS Discovery during 2006 and 2007; a fourth campaign has been making continuous measurements on the Norwegian weather ship Polarfront since September 2006. This paper provides an overview of the three projects and some of the highlights of the measurement campaigns.

Full access