Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: N. Bain x
  • All content x
Clear All Modify Search
Kenneth R. Knapp, Steve Ansari, Caroline L. Bain, Mark A. Bourassa, Michael J. Dickinson, Chris Funk, Chip N. Helms, Christopher C. Hennon, Christopher D. Holmes, George J. Huffman, James P. Kossin, Hai-Tien Lee, Alexander Loew, and Gudrun Magnusdottir

Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them that no central archive of geostationary data for all international satellites exists, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multisatellite climate studies. The International Satellite Cloud Climatology Project (ISCCP) set the stage for overcoming these issues by archiving a subset of the full-resolution geostationary data at ~10-km resolution at 3-hourly intervals since 1983. Recent efforts at NOAA's National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in Network Common Data Format (netCDF) using standards that permit a wide variety of tools and libraries to process the data quickly and easily. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

Full access
Jerald A. Brotzge, J. Wang, C. D. Thorncroft, E. Joseph, N. Bain, N. Bassill, N. Farruggio, J. M. Freedman, K. Hemker Jr., D. Johnston, E. Kane, S. McKim, S. D. Miller, J. R. Minder, P. Naple, S. Perez, James J. Schwab, M. J. Schwab, and J. Sicker

Abstract

The New York State Mesonet (NYSM) is a network of 126 standard environmental monitoring stations deployed statewide with an average spacing of 27 km. The primary goal of the NYSM is to provide high-quality weather data at high spatial and temporal scales to improve atmospheric monitoring and prediction, especially for extreme weather events. As compared with other statewide networks, the NYSM faced considerable deployment obstacles with New York’s complex terrain, forests, and very rural and urban areas; its wide range of weather extremes; and its harsh winter conditions. To overcome these challenges, the NYSM adopted a number of innovations unique among statewide monitoring systems, including 1) strict adherence to international siting standards and metadata documentation; 2) a hardened system design to facilitate continued operations during extreme, high-impact weather; 3) a station design optimized to monitor winter weather conditions; and 4) a camera installed at every site to aid situational awareness. The network was completed in spring of 2018 and provides data and products to a variety of sectors including weather monitoring and forecasting, emergency management, agriculture, transportation, utilities, and education. This paper focuses on the standard network of the NYSM and reviews the network siting, site configuration, sensors, site communications and power, network operations and maintenance, data quality control, and dissemination. A few example analyses are shown that highlight the benefits of the NYSM.

Restricted access