Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: N. R. P. Harris x
  • Refine by Access: All Content x
Clear All Modify Search
G. Vaughan, C. Schiller, A. R. MacKenzie, K. Bower, T. Peter, H. Schlager, N. R. P. Harris, and P. T. May

During November and December 2005, two consortia of mainly European groups conducted an aircraft campaign in Darwin, Australia, to measure the composition of the tropical upper-troposphere and tropopause regions, between 12 and 20 km, in order to investigate the transport and transformation in deep convection of water vapor, aerosols, and trace chemicals. The campaign used two high-altitude aircraft—the Russian M55 Geophysica and the Australian Grob 520 Egrett, which can reach 20 and 15 km, respectively—complemented by upward-pointing lidar measurements from the DLR Falcon and low-level aerosol and chemical measurements from the U.K. Dornier-228. The meteorology during the campaign was characterized mainly by premonsoon conditions—isolated afternoon thunderstorms with more organized convective systems in the evening and overnight. At the beginning of November pronounced pollution resulting from widespread biomass burning was measured by the Dornier, giving way gradually to cleaner conditions by December, thus affording the opportunity to study the influence of aerosols on convection. The Egrett was used mainly to sample in and around the outflow from isolated thunderstorms, with a couple of survey missions near the end. The Geophysica–Falcon pair spent about 40% of their flight hours on survey legs, prioritizing remote sensing of water vapor, cirrus, and trace gases, and the remainder on close encounters with storm systems, prioritizing in situ measurements. Two joint missions with all four aircraft were conducted: on 16 November, during the polluted period, sampling a detached anvil from a single-cell storm, and on 30 November, around a much larger multicellular storm.

Full access
C. J. Merchant, A. R. Harris, E. Maturi, O. Embury, S. N. MacCallum, J. Mittaz, and C. P. Old

Abstract

This paper describes the techniques used to obtain sea surface temperature (SST) retrievals from the Geostationary Operational Environmental Satellite 12 (GOES-12) at the National Oceanic and Atmospheric Administration’s Office of Satellite Data Processing and Distribution. Previous SST retrieval techniques relying on channels at 11 and 12 μm are not applicable because GOES-12 lacks the latter channel. Cloud detection is performed using a Bayesian method exploiting fast-forward modeling of prior clear-sky radiances using numerical weather predictions. The basic retrieval algorithm used at nighttime is based on a linear combination of brightness temperatures at 3.9 and 11 μm. In comparison with traditional split window SSTs (using 11- and 12-μm channels), simulations show that this combination has maximum scatter when observing drier colder scenes, with a comparable overall performance. For daytime retrieval, the same algorithm is applied after estimating and removing the contribution to brightness temperature in the 3.9-μm channel from solar irradiance. The correction is based on radiative transfer simulations and comprises a parameterization for atmospheric scattering and a calculation of ocean surface reflected radiance. Potential use of the 13-μm channel for SST is shown in a simulation study: in conjunction with the 3.9-μm channel, it can reduce the retrieval error by 30%. Some validation results are shown while a companion paper by Maturi et al. shows a detailed analysis of the validation results for the operational algorithms described in this present article.

Full access
V. Eyring, N. R. P. Harris, M. Rex, T. G. Shepherd, D. W. Fahey, G. T. Amanatidis, J. Austin, M. P. Chipperfield, M. Dameris, P. M. De F. Forster, A. Gettelman, H. F. Graf, T. Nagashima, P. A. Newman, S. Pawson, M. J. Prather, J. A. Pyle, R. J. Salawitch, B. D. Santer, and D. W. Waugh

Accurate and reliable predictions and an understanding of future changes in the stratosphere are major aspects of the subject of climate change. Simulating the interaction between chemistry and climate is of particular importance, because continued increases in greenhouse gases and a slow decrease in halogen loading are expected. These both influence the abundance of stratospheric ozone. In recent years a number of coupled chemistry–climate models (CCMs) with different levels of complexity have been developed. They produce a wide range of results concerning the timing and extent of ozone-layer recovery. Interest in reducing this range has created a need to address how the main dynamical, chemical, and physical processes that determine the long-term behavior of ozone are represented in the models and to validate these model processes through comparisons with observations and other models. A set of core validation processes structured around four major topics (transport, dynamics, radiation, and stratospheric chemistry and microphysics) has been developed. Each process is associated with one or more model diagnostics and with relevant datasets that can be used for validation. This approach provides a coherent framework for validating CCMs and can be used as a basis for future assessments. Similar efforts may benefit other modeling communities with a focus on earth science research as their models increase in complexity.

Full access
N. R. P. Harris, L. J. Carpenter, J. D. Lee, G. Vaughan, M. T. Filus, R. L. Jones, B. OuYang, J. A. Pyle, A. D. Robinson, S. J. Andrews, A. C. Lewis, J. Minaeian, A. Vaughan, J. R. Dorsey, M. W. Gallagher, M. Le Breton, R. Newton, C. J. Percival, H. M. A. Ricketts, S. J.-B. Bauguitte, G. J. Nott, A. Wellpott, M. J. Ashfold, J. Flemming, R. Butler, P. I. Palmer, P. H. Kaye, C. Stopford, C. Chemel, H. Boesch, N. Humpage, A. Vick, A. R. MacKenzie, R. Hyde, P. Angelov, E. Meneguz, and A. J. Manning

Abstract

The main field activities of the Coordinated Airborne Studies in the Tropics (CAST) campaign took place in the west Pacific during January–February 2014. The field campaign was based in Guam (13.5°N, 144.8°E), using the U.K. Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 atmospheric research aircraft, and was coordinated with the Airborne Tropical Tropopause Experiment (ATTREX) project with an unmanned Global Hawk and the Convective Transport of Active Species in the Tropics (CONTRAST) campaign with a Gulfstream V aircraft. Together, the three aircraft were able to make detailed measurements of atmospheric structure and composition from the ocean surface to 20 km. These measurements are providing new information about the processes influencing halogen and ozone levels in the tropical west Pacific, as well as the importance of trace-gas transport in convection for the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights in the region between 1°S and 14°N and 130° and 155°E. It was used to sample at altitudes below 8 km, with much of the time spent in the marine boundary layer. It measured a range of chemical species and sampled extensively within the region of main inflow into the strong west Pacific convection. The CAST team also made ground-based measurements of a number of species (including daily ozonesondes) at the Atmospheric Radiation Measurement Program site on Manus Island, Papua New Guinea (2.1°S, 147.4°E). This article presents an overview of the CAST project, focusing on the design and operation of the west Pacific experiment. It additionally discusses some new developments in CAST, including flights of new instruments on board the Global Hawk in February–March 2015.

Open access
C. Donlon, I. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. Gentemann, D. May, P. LeBorgne, J. Piollé, I. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. Wick, B. Emery, P. Minnett, R. Evans, D. Llewellyn-Jones, C. Mutlow, R. W. Reynolds, H. Kawamura, and N. Rayner

A new generation of integrated sea surface temperature (SST) data products are being provided by the Global Ocean Data Assimilation Experiment (GODAE) High-Resolution SST Pilot Project (GHRSST-PP). These combine in near-real time various SST data products from several different satellite sensors and in situ observations and maintain the fine spatial and temporal resolution needed by SST inputs to operational models. The practical realization of such an approach is complicated by the characteristic differences that exist between measurements of SST obtained from subsurface in-water sensors, and satellite microwave and satellite infrared radiometer systems. Furthermore, diurnal variability of SST within a 24-h period, manifested as both warm-layer and cool-skin deviations, introduces additional uncertainty for direct intercomparison between data sources and the implementation of data-merging strategies. The GHRSST-PP has developed and now operates an internationally distributed system that provides operational feeds of regional and global coverage high-resolution SST data products (better than 10 km and ~6 h). A suite of online satellite SST diagnostic systems are also available within the project. All GHRSST-PP products have a standard format, include uncertainty estimates for each measurement, and are served to the international user community free of charge through a variety of data transport mechanisms and access points. They are being used for a number of operational applications. The approach will also be extended back to 1981 by a dedicated reanalysis project. This paper provides a summary overview of the GHRSST-PP structure, activities, and data products. For a complete discussion, and access to data products and services see the information online at www.ghrsst-pp.org.

Full access
Robert J. H. Dunn, F. Aldred, Nadine Gobron, John B. Miller, Kate M. Willett, M. Ades, Robert Adler, Richard, P. Allan, Rob Allan, J. Anderson, Anthony Argüez, C. Arosio, John A. Augustine, C. Azorin-Molina, J. Barichivich, H. E. Beck, Andreas Becker, Nicolas Bellouin, Angela Benedetti, David I. Berry, Stephen Blenkinsop, Olivier Bock, X. Bodin, Michael G. Bosilovich, Olivier Boucher, S. A. Buehler, B. Calmettes, Laura Carrea, Laura Castia, Hanne H. Christiansen, John R. Christy, E.-S. Chung, Melanie Coldewey-Egbers, Owen R. Cooper, Richard C. Cornes, Curt Covey, J.-F. Cretaux, M. Crotwell, Sean M. Davis, Richard A. M. de Jeu, Doug Degenstein, R. Delaloye, Larry Di Girolamo, Markus G. Donat, Wouter A. Dorigo, Imke Durre, Geoff S. Dutton, Gregory Duveiller, James W. Elkins, Vitali E. Fioletov, Johannes Flemming, Michael J. Foster, Stacey M. Frith, Lucien Froidevaux, J. Garforth, Matthew Gentry, S. K. Gupta, S. Hahn, Leopold Haimberger, Brad D. Hall, Ian Harris, D. L. Hemming, M. Hirschi, Shu-pen (Ben) Ho, F. Hrbacek, Daan Hubert, Dale F. Hurst, Antje Inness, K. Isaksen, Viju O. John, Philip D. Jones, Robert Junod, J. W. Kaiser, V. Kaufmann, A. Kellerer-Pirklbauer, Elizabeth C. Kent, R. Kidd, Hyungjun Kim, Z. Kipling, A. Koppa, B. M. Kraemer, D. P. Kratz, Xin Lan, Kathleen O. Lantz, D. Lavers, Norman G. Loeb, Diego Loyola, R. Madelon, Michael Mayer, M. F. McCabe, Tim R. McVicar, Carl A. Mears, Christopher J. Merchant, Diego G. Miralles, L. Moesinger, Stephen A. Montzka, Colin Morice, L. Mösinger, Jens Mühle, Julien P. Nicolas, Jeannette Noetzli, Ben Noll, J. O’Keefe, Tim J. Osborn, T. Park, A. J. Pasik, C. Pellet, Maury S. Pelto, S. E. Perkins-Kirkpatrick, G. Petron, Coda Phillips, S. Po-Chedley, L. Polvani, W. Preimesberger, D. G. Rains, W. J. Randel, Nick A. Rayner, Samuel Rémy, L. Ricciardulli, A. D. Richardson, David A. Robinson, Matthew Rodell, N. J. Rodríguez-Fernández, K.H. Rosenlof, C. Roth, A. Rozanov, T. Rutishäuser, Ahira Sánchez-Lugo, P. Sawaengphokhai, T. Scanlon, Verena Schenzinger, R. W. Schlegel, S. Sharma, Lei Shi, Adrian J. Simmons, Carolina Siso, Sharon L. Smith, B. J. Soden, Viktoria Sofieva, T. H. Sparks, Paul W. Stackhouse Jr., Wolfgang Steinbrecht, Martin Stengel, Dimitri A. Streletskiy, Sunny Sun-Mack, P. Tans, S. J. Thackeray, E. Thibert, D. Tokuda, Kleareti Tourpali, Mari R. Tye, Ronald van der A, Robin van der Schalie, Gerard van der Schrier, M. van der Vliet, Guido R. van der Werf, A. Vance, Jean-Paul Vernier, Isaac J. Vimont, Holger Vömel, Russell S. Vose, Ray Wang, Markus Weber, David Wiese, Anne C. Wilber, Jeanette D. Wild, Takmeng Wong, R. Iestyn Woolway, Xinjia Zhou, Xungang Yin, Guangyu Zhao, Lin Zhao, Jerry R. Ziemke, Markus Ziese, and R. M. Zotta
Full access